2022 Fiscal Year Final Research Report
Next-generation relativistic cosmology in the era of precision observations
Project/Area Number |
19H01891
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 15010:Theoretical studies related to particle-, nuclear-, cosmic ray and astro-physics
|
Research Institution | Kyoto University |
Principal Investigator |
Naruko Atsushi 京都大学, 基礎物理学研究所, 特定助教 (80749507)
|
Co-Investigator(Kenkyū-buntansha) |
山内 大介 神奈川大学, 工学部, 助教 (10624645)
齊藤 遼 山口大学, 大学院創成科学研究科, 講師 (70781392)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Keywords | 相対論的宇宙論 / 宇宙マイクロ波背景放射 / 宇宙大規模構造 / 重力波 |
Outline of Final Research Achievements |
Cosmological perturbation theory, which deals with fluctuations in the universe, is an essential tool for linking observational data with theoretical predictions. "Nonlinearities of primordial fluctuations" are small but always present, and by correctly analyzing them, we can obtain essentially new and much richer information about the early universe that cannot be obtained by linear perturbation theory.
In this research project, we have studied the nonlinear growth of primordial fluctuations and developed the method to systematically analyze cosmic microwave background radiation and cosmic large scale structures at the non-linear level of perturbations. We have also studied the observability of stochastic gravitational wave background. Through these studies, we have constructed a theoretical framework to treat all process from the generation of fluctuations to their observational impacts at the nonlinear level.
|
Free Research Field |
相対論的宇宙論
|
Academic Significance and Societal Importance of the Research Achievements |
現在、そして将来的な観測計画を前に、「ゆらぎの非線形性」の解析手法を整備し、その観測可能性や観測量への影響を明らかにすることは、次世代宇宙論の構築にとっては必須の命題である。本研究課題を通じて、ゆらぎの非線形性の解析手法を発見・提示し、さらに一歩踏み込んでそれらの観測可能性まで明らかにすることができ、ゆらぎの非線形性の重要性をはっきりと示した。今後、さらに新しい視点からの解析・観測手法の提案につながると予想される。また研究の中で、非線形・非接道的な解析手法の構築することができ、これらの手法の他分野や他の研究課題への応用的な展開も考えられ、本課題の学術的・社会的意義は大きいと考えている。
|