2021 Fiscal Year Final Research Report
Study on Nano-Surface Integrity Measurement of Machined Glass Component using Entangled Photon Probe
Project/Area Number |
19H02042
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 18020:Manufacturing and production engineering-related
|
Research Institution | Osaka University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
水谷 康弘 大阪大学, 工学研究科, 准教授 (40374152)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Keywords | ガラス加工表面 / ナノ・サーフェスインテグリティ / 仮想量子ドット / 量子もつれ光子プローブ / ドレスト光子フォノン / 予測型マイクロクラック計測 / フォトンメトロロジー / 加工計測 |
Outline of Final Research Achievements |
The purpose of this study is to establish a new fundamental principle of measurement for evaluating nano-surface integrity of a machined glass surface layer based on the mechanism of the interaction between dressed photons reflecting phonons and quantum entangled photons. The information on physical properties of microscopic structure/stress field as well as spatial distribution can be obtained from dressed photons and spatial distribution from quantum entangled photons respectively. As the achievements of this study, we constructed a unique confocal detecting Raman spectroscopy measurement system with the sensitivity of photons. Furthermore, the validity of the basic principle of the non-scanning phase shift interferometer using polarized quantum entangled photon pairs was verified, which is a method for detecting laser backscattered photons by microcracks in a machined glass surface layer and measuring the changes in the molecular structure with higher spatial resolution.
|
Free Research Field |
機械工学・生産工学・加工計測
|
Academic Significance and Societal Importance of the Research Achievements |
非晶質構造をもつガラスは,結晶構造に基づいたクラック挙動モデルが利用できないため,光の量子効果による分子構造変化の測定原理の確立は,当該分野において先駆的な試みであり,本研究の学術的意義は極めて高い.本研究成果によってマイクロクラック近傍の局所応力評価が可能となれば,破壊挙動の高い予測精度によって,機械加工によって製造される高機能ガラス素子などの安全性・耐久性・信頼性が格段に向上し,他の硬脆材料評価法への大きな波及効果も期待できる.さらに,非破壊・高感度な本測定法と加工の融合によって,従来加工法の限界のブレークスルーやレーザーを用いたフォノン制御による新たなナノ微細加工原理への展開が拡がる.
|