• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Integrated study of robustness in insect flights: dynamics, aerodynamic and control

Research Project

  • PDF
Project/Area Number 19H02060
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 19010:Fluid engineering-related
Research InstitutionChiba University

Principal Investigator

Liu Hao  千葉大学, 大学院工学研究院, 教授 (40303698)

Co-Investigator(Kenkyū-buntansha) 中田 敏是  千葉大学, 大学院工学研究院, 准教授 (80793190)
Project Period (FY) 2019-04-01 – 2022-03-31
Keywords昆虫飛行 / 空力ロバストネス / 飛行制御ロバストネス / 力学シミュレーション / 擬似乱流風導実験
Outline of Final Research Achievements

Insects power and control their flight by flapping their wings. Insect flights are diverse but robust relying on the integration of different flexible structures including wings, exoskeletal elements, wing-hinges, musculoskeletal elements, and sensors. In this study, to unlock how insects execute complex maneuvers in turbulent environments, we developed an integrated computational platform of insect-inspired flight systems and explored unraveling a passive and active mechanism strategy of how flexible wing-body structures work interactively to achieve a systematically efficient and robust flapping-wing dynamics and aerodynamics as well as flight control. An extensive investigation was further undertaken on the insect flight strategies in terms of robustness, intelligence and flexible-structure-based multi-functionalities. Our results provide a novel biomimetic design of the insect-inspired micro air vehicles / drones with capabilities to perform a variety of complex maneuvers.

Free Research Field

生物流体、生物飛行、バイオメカニクス、バイオミメティクス

Academic Significance and Societal Importance of the Research Achievements

本研究は、外乱に強い昆虫羽ばたき飛行の空気力学ロバスト性(なぜ失速しないのか)と飛行制御ロバスト性(なぜ安定飛行できるのか)を解明したことにより、様々な自然環境に強く、“墜ちない”生物規範型羽ばたきロボットやドローンなど次世代“安全安心”無人航空機の研究開発に、一つのバイオミメティクス設計指針を提供した。また、昆虫のもつ翼と胴体と筋骨格系の柔軟構造が知能構造として生み出す飛行制御則は、小型飛行体の安定性・操縦性トレードオフを打破する一つのキーになる可能性を示唆し、それが生物飛行制御のロバスト性の解明だけでなく、次世代ドローンや空飛ぶ車に革新的な設計指針をもたらすことが期待される。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi