2021 Fiscal Year Final Research Report
Active control and simulator of neurons in regenerative transplantation treatment with the aid of environment control utilizing three-dimensional dynamic stimulations
Project/Area Number |
19H02089
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 20010:Mechanics and mechatronics-related
|
Research Institution | Yamagata University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
馮 忠剛 山形大学, 大学院理工学研究科, 准教授 (10332545)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Keywords | iPS細胞 / ニューロン分化・成長誘導制御 / 3次元ゲル包埋培養 / 3次元ニューロンネットワーク / in vitro移植シミュレータ / 超小型3次元振動ステージ / 3次元動的力学刺激環境 / 移植性促進法 |
Outline of Final Research Achievements |
Not like a conventional approach but based on the principle of mechanics, a novel small sized piezoelectric 3-D vibration table is developed to impose dynamic stimulations on cultured living cells in order to support regenerative medicine. Together with scaffold utilizing gel-embedded 3-D culture, the device enables us to enforce 3-D micro dynamic stimulations upon the cultured neuronal networks. Appropriately soft but structurally stable scaffold is realized by optimization of collagen-gel concentration, which provides an effective method for the gel-embedded 3-D culture of neurons differentiated from iPS cells. Enforcing systematic 3-D dynamic stimulations upon gel-embedded neuronal networks by the developed 3-D vibration table, principle usefulness of the present study as a 3-D manipulation and active control method of neuronal networking as well as simulation system for regenerative transplantation medicine has been confirmed.
|
Free Research Field |
医用生体工学,機械力学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では,iPS細胞を用いた再生治療に貢献するため,生きている培養細胞に対し従来の化学的誘導因子に加え,3次元の動的力学刺激を自在に付加し得る圧電駆動超小型3次元振動ステージを開発した。ゲル包埋3次元培養法と合わせ,これまでとは全く異なる力学的原理に基づく3次元ニューロンネットワークの創生・誘導制御および再生移植シミュレーションを可能とする革新的システムを開発した。今後の更なる研究により,脊髄損傷やパーキンソン病等神経系難病に対する再生移植治療の実現を支援・推進するデバイス,スキルに展開し得る可能性を提示した。
|