• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Development of rare-earth oxide based optical amplifiers and lasers integrated on Si by using magnetic light-matter interactions

Research Project

  • PDF
Project/Area Number 19H02207
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 21060:Electron device and electronic equipment-related
Research InstitutionNTT Basic Research Laboratories

Principal Investigator

Xu Xuejun  日本電信電話株式会社NTT物性科学基礎研究所, フロンティア機能物性研究部, 主任研究員 (80593334)

Co-Investigator(Kenkyū-buntansha) 後藤 秀樹  日本電信電話株式会社NTT物性科学基礎研究所, 企画, 所長 (10393795)
俵 毅彦  日本大学, 工学部, 教授 (40393798)
尾身 博雄  大和大学, 理工学部, 教授 (50257218)
澤野 憲太郎  東京都市大学, 理工学部, 教授 (90409376)
稲葉 智宏  日本電信電話株式会社NTT物性科学基礎研究所, フロンティア機能物性研究部, 研究員 (90839119)
Project Period (FY) 2019-04-01 – 2022-03-31
Keywords希土類イオン / 光増幅器 / レーザー / シリコンフォトニクス / 光導波路 / ナノ共振器
Outline of Final Research Achievements

High quality single-crystal rare-earth oxide thin films (Gd2O3 and (ErGd)2O3) have been successfully grown on silicon-on-insulator substrate by using molecular beam epitaxy method. For realization optical amplifiers, a waveguide platform with low loss (2.3 dB/cm) and large optical confinement factor (~42%) has been demonstrated. Through pump-probe measurement, optical signal enhancement up to 24 dB/cm has been obtained in the waveguide and material transparency has been achieved. Microring resonators with high Q-factors have also been demonstrated for realizing lasers. High Q-factor metasurface structures have also been designed for investigation and manipulation of light emission of electric dipole and magnetic dipole transitions of Er3+ ions. Finally, the demonstrated waveguides and resonators have also found to be a promising platform for integrated quantum optical devices.

Free Research Field

応用物理工学

Academic Significance and Societal Importance of the Research Achievements

シリコン上にモノリシック集積可能な光増幅器とレーザーはシリコンフォトニクスにおいて最も重要かつ実現されてない要素デバイスである。本研究で実証された酸化希土類薄膜材料及びデバイス構造では、これらのデバイスの実現に非常に有望なプラットフォームと言え、モノリシック光集積回路技術に活用できると期待される。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi