2022 Fiscal Year Final Research Report
Proposal of Laser-Detonated Shock Tube and Improvement of Heating Prediction Accuracy of Atmospheric Entry Capsule with Precursor Radiation
Project/Area Number |
19H02348
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 24010:Aerospace engineering-related
|
Research Institution | Tottori University (2021-2022) Yamaguchi University (2019-2020) |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
富田 健太郎 北海道大学, 工学研究院, 准教授 (70452729)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Keywords | 大気圏突入 / レーザーデトネーション / レーザートムソン散乱 / 数値流体力学 / レーザープラズマ |
Outline of Final Research Achievements |
There are near-future missions in that capsules enter the atmosphere at an unprecedented high speed, and there is an urgent need to elucidate the severe heating environment. This study attempted to simulate this heating environment using laser-driven detonation waves and to elucidate the behavior of electrons, which play an important role in the heating process. As a result, shadowgraphs and emission spectroscopy revealed that the detonation wave is accompanied by a high-temperature plasma of tens of thousands of degrees Kelvin. They showed its promise as a device for simulating an ultra-high-speed reentry environment. We attempted to measure the electronic quantities with high accuracy using laser Thomson scattering and found that the removal of strong spontaneous emission is necessary to capture significant signals. We also peformed numerical analysis to investigate the wavelength dependence of the detonation wave, and revealed the promise of a laser with 1 um wavelength.
|
Free Research Field |
航空宇宙流体力学
|
Academic Significance and Societal Importance of the Research Achievements |
超高速大気圏突入カプセルの加熱予測精度の向上は、挑戦的探査計画での確実なカプセル回収のための必須事項である。本研究では、レーザー爆轟波の伝播速度のレーザーパワー依存性とプラズマ温度を明らかにし、レーザー爆轟風洞が、超高速突入時の加熱環境シミュレータとして有望であることを示した。また、成功には至っていないが、レーザートムソン散乱法が爆轟波プラズマ計測の有効な手段となりうることも示唆した。さらに、爆轟波の駆動には、CO2レーザーよりも、最近の発展の目覚ましい固体レーザーが有利となる可能性を示し、固体レーザーの新たな応用先となりうることを示した。
|