2021 Fiscal Year Final Research Report
Systematic understanding of oxygen vacancies and prediction by machine learning
Project/Area Number |
19H02416
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 26010:Metallic material properties-related
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
Kumagai Yu 東京工業大学, 科学技術創成研究院, 准教授 (00722464)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Keywords | 酸素空孔 / 第一原理計算 / ハイスループット計算 / 機械学習 |
Outline of Final Research Achievements |
Conventional point defect calculations were limited to individual studies of specific materials due to the complexity of the process. However, computer performance has improved dramatically over the years, and in recent years, it has become sufficient to perform systematic point defect calculations. Therefore, we performed systematic point defect calculations for several thousand materials and constructed a database of calculated materials. Furthermore, based on this database, we predicted point defect formation energies by machine learning and discovered peculiar phenomena related to point defects.
|
Free Research Field |
計算材料学
|
Academic Significance and Societal Importance of the Research Achievements |
物質中には、点欠陥が多数存在し、それらが材料機能発現において重要な役割を担っている。しかしながら、点欠陥特性を詳細に調べるため必要な原子レベルでの解析を、実験により行うことは極めて難しい。そこで近年、電子に関する量子力学の基本方程式を解く、第一原理計算を用いて点欠陥特性を調べる研究が行われる様になってきた。本研究では、数千物質を対象に系統的な点欠陥計算を行い、それらの計算材料データベース構築を行なった。これにより、効率的な新材料探索につながると期待される。
|