• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Systematic understanding of oxygen vacancies and prediction by machine learning

Research Project

  • PDF
Project/Area Number 19H02416
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 26010:Metallic material properties-related
Research InstitutionTokyo Institute of Technology

Principal Investigator

Kumagai Yu  東京工業大学, 科学技術創成研究院, 准教授 (00722464)

Project Period (FY) 2019-04-01 – 2022-03-31
Keywords酸素空孔 / 第一原理計算 / ハイスループット計算 / 機械学習
Outline of Final Research Achievements

Conventional point defect calculations were limited to individual studies of specific materials due to the complexity of the process. However, computer performance has improved dramatically over the years, and in recent years, it has become sufficient to perform systematic point defect calculations. Therefore, we performed systematic point defect calculations for several thousand materials and constructed a database of calculated materials. Furthermore, based on this database, we predicted point defect formation energies by machine learning and discovered peculiar phenomena related to point defects.

Free Research Field

計算材料学

Academic Significance and Societal Importance of the Research Achievements

物質中には、点欠陥が多数存在し、それらが材料機能発現において重要な役割を担っている。しかしながら、点欠陥特性を詳細に調べるため必要な原子レベルでの解析を、実験により行うことは極めて難しい。そこで近年、電子に関する量子力学の基本方程式を解く、第一原理計算を用いて点欠陥特性を調べる研究が行われる様になってきた。本研究では、数千物質を対象に系統的な点欠陥計算を行い、それらの計算材料データベース構築を行なった。これにより、効率的な新材料探索につながると期待される。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi