• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Materials design using first principles calculations and machine learning

Research Project

  • PDF
Project/Area Number 19H02419
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 26010:Metallic material properties-related
Research InstitutionKyoto University

Principal Investigator

Seko Atsuto  京都大学, 工学研究科, 准教授 (10452319)

Project Period (FY) 2019-04-01 – 2022-03-31
Keywords機械学習 / 第一原理計算 / 結晶構造探索
Outline of Final Research Achievements

The machine-learning potential (MLP) providing an accurate description of the relationship between the energy and the crystal structure and its potential applications are of growing interest. Such an approach is a framework of polynomial MLP, in which the introduction of group-theoretical high-order rotational polynomial invariants contributes to systematically derive MLPs with high predictive power for a wide range of structures, including extreme structures. This approach successfully constructs accurate and efficient MLPs in a variety of elemental metals and alloys. The Pareto optimal polynomial MLPs with different trade-offs between accuracy and computational efficiency for various systems are distributed in Polynomial Machine Learning Potential Repository with our implementation (polymlp-package) that enables us to use the polynomial MLPs in the LAMMPS code.

Free Research Field

計算材料科学

Academic Significance and Societal Importance of the Research Achievements

基礎的な第一原理計算は,系の元素・結晶構造をもとに,エネルギーや電子状態を計算するものであり,材料研究に広く用いられている.しかし,実際の材料の物性や現象に対しては,非常に単純なモデルを導入し第一原理計算を行う以外なく,その精度を確かめる手段すらない.そのような状況において,本研究は,第一原理計算の精度で,実際の材料物性や現象を取り扱う方法を構築することで,材料研究を大幅に進展させるものである.

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi