2021 Fiscal Year Final Research Report
Materials design using first principles calculations and machine learning
Project/Area Number |
19H02419
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 26010:Metallic material properties-related
|
Research Institution | Kyoto University |
Principal Investigator |
Seko Atsuto 京都大学, 工学研究科, 准教授 (10452319)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Keywords | 機械学習 / 第一原理計算 / 結晶構造探索 |
Outline of Final Research Achievements |
The machine-learning potential (MLP) providing an accurate description of the relationship between the energy and the crystal structure and its potential applications are of growing interest. Such an approach is a framework of polynomial MLP, in which the introduction of group-theoretical high-order rotational polynomial invariants contributes to systematically derive MLPs with high predictive power for a wide range of structures, including extreme structures. This approach successfully constructs accurate and efficient MLPs in a variety of elemental metals and alloys. The Pareto optimal polynomial MLPs with different trade-offs between accuracy and computational efficiency for various systems are distributed in Polynomial Machine Learning Potential Repository with our implementation (polymlp-package) that enables us to use the polynomial MLPs in the LAMMPS code.
|
Free Research Field |
計算材料科学
|
Academic Significance and Societal Importance of the Research Achievements |
基礎的な第一原理計算は,系の元素・結晶構造をもとに,エネルギーや電子状態を計算するものであり,材料研究に広く用いられている.しかし,実際の材料の物性や現象に対しては,非常に単純なモデルを導入し第一原理計算を行う以外なく,その精度を確かめる手段すらない.そのような状況において,本研究は,第一原理計算の精度で,実際の材料物性や現象を取り扱う方法を構築することで,材料研究を大幅に進展させるものである.
|