2021 Fiscal Year Final Research Report
Material function design and physico-chemical properties of nano-sized diamond with surface modified by functional compounds in supercritical CO2
Project/Area Number |
19H02495
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 27010:Transport phenomena and unit operations-related
|
Research Institution | Kanazawa University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
多田 薫 金沢大学, 機械工学系, 助教 (20190811)
内田 博久 金沢大学, フロンティア工学系, 教授 (70313294)
春木 将司 金沢大学, 機械工学系, 准教授 (90432682)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Keywords | ナノコンポジット / ナノダイヤモンド / 超臨界二酸化炭素 / 表面修飾 / 分散性制御 / 溶解度 |
Outline of Final Research Achievements |
We have developed a chemical modification process for the surface of nanodiamond particles using supercritical CO2. Using surface chemical modifiers (stearic acid and p-aminobenzoic acid), the relationship between the amount of modification on the nanodiamond surface and operating conditions and the effect of the phase state of the surface modifier were examined. In addition, the chemical bonding on the surface of the modified nanoparticles was clarified by by infrared absorption spectra, TG, and TEM, etc. Also the dispersibility of the modified nanodiamond in organic solvent was clarified by the average particle size distribution. Furthermore, since the concentration of the surface modifier greatly affects the chemical reaction mechanism, we developed a experimental apparatus for the solubility of the surface modifier in supercritical CO2 and obserbed the behavior of the solubility. We also developed thermodynamic analysis and calculation methods by various state equations.
|
Free Research Field |
プロセス工学
|
Academic Significance and Societal Importance of the Research Achievements |
超臨界CO2の安全性と優れた溶媒特性を利用した環境配慮型ナノ粒子表面化学修飾プロセス開発を行った。学術的には,超臨界CO2を用いたナノダイヤモンド粒子表面での表面改質剤の修飾量とその反応機構及び超臨界CO2中の表面改質剤の溶解度測定とその推算法の開発を行った。具体的には,ナノダイヤモンド表面で,ステアリン酸等により表面水酸基とエステル結合が形成され,親水性であったナノダイヤモンド表面が疎水化され,有機溶媒中で安定的な分散性が著しく向上されることを示した。社会的には,従来の溶媒浸漬法の代替として,超臨界CO2による環境配慮型ナノコンポジット創製技術を創出した。また,この成果をもとに特許出願した。
|