2022 Fiscal Year Final Research Report
Photovoltaic properties in high-density self-organized type-II quantum dot superlattice
Project/Area Number |
19H02541
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 28020:Nanostructural physics-related
|
Research Institution | The University of Tokyo |
Principal Investigator |
Okada Yoshitaka 東京大学, 先端科学技術研究センター, 教授 (40224034)
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Keywords | 量子ドット太陽電池 / 量子ドット / 量子ナノ構造 / 自己組織化成長 / 分子線エピタキシー / 光閉じ込め技術 / 中間バンド太陽電池 |
Outline of Final Research Achievements |
1) We have succeeded in a high quality growth of GaAsSb alloy in the form of quantum dots and quantum rings on GaAs(001) substrate by molecular beam epitaxy (MBE) with precise alloy composition. In GaAsSb/GaAs quantum ring solar cells, improved characteristics was observed due to the improvement of carrier lifetime. 2) We have succeeded in the fabrication of thin-film GaAsSb/GaAs quantum ring solar cells integrated with a Fabry-Perot light-trapping structure by using epitaxial lift-off (ELO) technique. We were able to demonstrate an improvement in both the short-circuit current and the open-circuit voltage of solar cell as a result of increased photon absorption as well as reduced recombination rates.
|
Free Research Field |
ナノ構造物理
|
Academic Significance and Societal Importance of the Research Achievements |
従来の InAs/GaAs 量子ドット太陽電池で課題となっていた開放電圧の低下が、低欠陥の量子リングの自己組織化成長とその多積層化技術の開発によって解決することができた。量子ナノ構造の物性評価において、量子ドットは弾性緩和が大きく室温では非発光再結合が大きな割合を占め、再現性の高い精密な物性評価やシミュレーション結果との照合が困難であった。一方の量子リングは弾性緩和が小さく非発光再結合が抑制され、また多積層化が実現できたことから、これまで測定が困難だった2段階吸収過程等の室温での評価を行いやすくなったと考えられる。
|