• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Micro/Nano Fusion Process based Nanopore Sensing Device for Optical and Electrical Combined Detection

Research Project

  • PDF
Project/Area Number 19H02571
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 28050:Nano/micro-systems-related
Research InstitutionKyoto University of Advanced Science

Principal Investigator

TABATA OSAMU  京都先端科学大学, 工学部, 教授 (20288624)

Co-Investigator(Kenkyū-buntansha) 菅野 公二  神戸大学, 工学研究科, 准教授 (20372568)
山下 直輝  東京理科大学, 理工学部機械工学科, 助教 (50847746)
川合 健太郎  大阪大学, 工学研究科, 助教 (90514464)
Project Period (FY) 2019-04-01 – 2022-03-31
Keywordsナノプロセス / DNA / グラフェン / ナノポアセンシング / SERS
Outline of Final Research Achievements

A CVD method using gallium as a liquid metal catalyst was proposed as a direct formation process for freestanding film of monolayer graphene. Nanopore milling was performed on freestanding CVD graphene films using a helium ion microscope. The nanopore fabrication was reproducible with a minimum size of 3.5 nm to freestanding CVD graphene.
As a result of the investigation of the removal process of AuNP surface molecules, it was possible to perform SERS measurements free from noise effects caused by molecules that had previously coated the surface. SERS measurements of single-stranded DNA with AuNP dimers of 200 nm on a substrate were performed. We investigated the possibility of optical single molecule/single base detection and identification of DNA oligomers. Nanogap electrodes were fabricated by nano-wiring on AuNP dimers. Electrical and optical evaluation of the nanogap was performed based on tunneling current and SERS characteristics, respectively.

Free Research Field

微細加工,ナノテクノロジー

Academic Significance and Societal Importance of the Research Achievements

液体ガリウム触媒を用いることで常圧CVDにより単層グラフェン自立膜の直接形成を実現した。また、ヘリウムイオン顕微鏡による最小直径1.5nmのナノポア加工と組み合わせることで単一原子厚さを持つセンシング部を構築した。また、DNAナノ構造を使った大粒径AuNPダイマーの形成に成功した。直径200 nmのAuNPダイマーを用いた電気的・光学的なDNAオリゴマー1分子検出の可能性を示した。本研究で得られた成果は、光電気複合型センサデバイスによる新しいDNA計測技術の構築に資するものである。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi