• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Development of a new dielectric microscope and analysis of the linkage mechanism of intracellular organelles

Research Project

  • PDF
Project/Area Number 19H03230
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 44010:Cell biology-related
Research InstitutionNational Institute of Advanced Industrial Science and Technology

Principal Investigator

Ogura Toshihiko  国立研究開発法人産業技術総合研究所, 生命工学領域, 上級主任研究員 (70371028)

Co-Investigator(Kenkyū-buntansha) 山本 条太郎  国立研究開発法人産業技術総合研究所, 生命工学領域, 研究員 (20585088)
岡田 知子  国立研究開発法人産業技術総合研究所, 生命工学領域, 総括研究主幹 (30344146)
Project Period (FY) 2019-04-01 – 2023-03-31
Keywords窒化シリコン薄膜 / 走査電子顕微鏡 / 誘電率 / 液中観察 / 培養細胞 / 細胞内小器官
Outline of Final Research Achievements

In this research, we improved the functionality of the scanning electron dielectric microscope. To achieve this, we developed a high-sensitivity, low-noise first-stage amplifier and a high-resolution observation holder with a 10-nm-thick SiN thin film. By increasing the thickness of the silicon nitride thin film to 10 nm, the spatial resolution was improved to 4.5 nm, making it possible to observe the structure of cells and organic materials in greater detail. By using this system, it is possible to directly observe various cells such as mouse breast cancer cells, melanin pigment cells, and oral epithelial cells at the nano level. Furthermore, from the observed images, we succeeded in analyzing the movement mechanism of intracellular organelles such as the intracellular membrane. In addition, by using the latest image information processing technology, we have developed an automatic analysis system for intracellular vesicles.

Free Research Field

ナノバイオテクノロジー

Academic Significance and Societal Importance of the Research Achievements

本研究では、高機能な走査電子誘電率顕微鏡を開発した。本システムを用いる事で、培養細胞の内部構造をナノレベルの分解能で生きたまま直接観察する事が可能となった。これにより、細胞内小器官のより詳細な解析が進展する事が予想される。さらに、培養細胞だけでなく、バクテリアやタンパク質複合体等の様々な生物試料の溶液中での直接観察と分析を可能とする。これ以外にも溶液中の有機材料やナノ粒子、食品や化粧品、石油化学製品、燃料電池や2次電池材料等の様々な分野においても活用が期待され、学術的にも産業的にも極めて大きな意義があるものと考えられる。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi