• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Structure and function of primate cortico-basal ganglia loop circuits involved in procedural learning

Research Project

  • PDF
Project/Area Number 19H03335
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 46020:Anatomy and histopathology of nervous system-related
Research InstitutionKyoto University

Principal Investigator

Inoue Ken-ichi  京都大学, 霊長類研究所, 助教 (90455395)

Co-Investigator(Kenkyū-buntansha) 小池 康晴  東京工業大学, 科学技術創成研究院, 教授 (10302978)
Project Period (FY) 2019-04-01 – 2022-03-31
Keywords神経科学 / 脳・神経 / ウイルスベクター / 解剖学 / 手続き学習
Outline of Final Research Achievements

In this study, to elucidate the functional architecture of the cortico-basal ganglia loop circuit, we first developed a novel neuroanatomical method (bi-directional multicolor transneuronal tracing method) that enables the simultaneous application of retrograde transsynaptic tracing and axonal tracing to two cortical regions. We also established a method using AI to automatically analyze retrograde labels with the same level of accuracy as human judgment. By using these novel technologies, we investigated the information integration patterns of cortico-basal ganglia loop circuits that originate from the premotor cortex and anterior cingulate cortex, The results indicates that information from each cortex is integrated within the basal ganglia and that each pathway in the basal ganglia has a different mode of information integration.

Free Research Field

神経科学・神経解剖学・ウイルス学

Academic Significance and Societal Importance of the Research Achievements

本研究で確立した新規神経回路解析法により、大脳基底核内で各皮質からの情報が統合され、大脳基底核内の各経路はそれぞれ異なる情報統合様式を有しているなど大脳皮質―大脳基底核ループの構築様式の一端が明らかとなった。同法は原理的には全ての皮質を起始とするループ回路に適用可能であることから、今後霊長類の大脳皮質―大脳基底核ループ回路における情報統合様式の全貌が解明されると期待される。このことは多岐にわたる大脳基底核機能の統一的な理解、および大脳基底核が関与する運動疾患および精神疾患の病態の理解に貢献できると考えられる。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi