• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Artificial intelligence techniques utilized for nationwide mapping and prediction modeling of spatio-temporal changes in plant communities

Research Project

  • PDF
Project/Area Number 19H04320
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 64040:Social-ecological systems-related
Research InstitutionTokyo University of Information Sciences

Principal Investigator

Hara Keitarou  東京情報大学, 総合情報学部, 教授 (20208648)

Co-Investigator(Kenkyū-buntansha) 富田 瑞樹  東京情報大学, 総合情報学部, 教授 (00397093)
藤原 道郎  兵庫県立大学, 緑環境景観マネジメント研究科, 教授 (80250158)
Project Period (FY) 2019-04-01 – 2022-03-31
Keywords植生変化 / 植生図化 / 植生分布モデル / AI / リモートセンシング
Outline of Final Research Achievements

One of the significant effects of climate change on vegetation which is also the basis of terrestrial ecosystems, is that rapid and major changes have already affected in the vegetation distribution. Understanding the current vegetation distribution and predicting the future vegetation distribution are indispensable for the harmony between vegetation and humans, and for sustainable development. In this research, we developed the model of the current vegetation distribution using by fusion the earth observation data by satellite remote sensing and deep learning technology and made the nationwide vegetation distribution based on Dominant Genus-Physiognomy type (DG-P type). In addition, order to develop a nationwide vegetation dynamics model that to predict future vegetation distribution, we collected and prepared GDDP (Global Daily Downscaled Projections), which is climate prediction data provided by NASA.

Free Research Field

生態学

Academic Significance and Societal Importance of the Research Achievements

気候変動に伴う気温と降水量の変化は、日本の多様な植生の種組成と分布にこれまでにない変化を及ぼすことがわかっている。植生から得られる生態系サービスの享受による持続可能な発展に向けた対策を講じるためには、植生分布の現況を正確に捉え、そして、将来の変化を予測することが肝要である。本研究では、全国規模における植生分布を「群落優占種(属)相観型」(DG-P型)で表すことができた。今後、この植生分布の現況と気候予測データとを複合的に解析することで、将来の植生分布を予測する植生動態モデルが開発できる。この成果によって、生態系サービスに配慮した実効ある政策立案が可能となる。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi