• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Development of ultra-high resolution X-ray diffraction method in the range from micro eV to nano eV and its application to dynamics studies

Research Project

  • PDF
Project/Area Number 19H04404
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 80040:Quantum beam science-related
Research InstitutionNational Institutes for Quantum Science and Technology

Principal Investigator

Takaya Mitsui  国立研究開発法人量子科学技術研究開発機構, 関西光科学研究所 放射光科学研究センター, 上席研究員 (20354988)

Co-Investigator(Kenkyū-buntansha) 大和田 謙二  国立研究開発法人量子科学技術研究開発機構, 関西光科学研究所 放射光科学研究センター, グループリーダー (60343935)
Project Period (FY) 2019-04-01 – 2022-03-31
Keywords放射光 / 核共鳴散乱 / メスバウアー分光 / X線非弾性散乱 / X線回折
Outline of Final Research Achievements

A synchrotron radiation based ultrahigh resolution spectrometer was developed by an variable bandwidth iron-57 synchrotron Mossbauer radiation and a nuclear resonant absorber. It is possible to separate elastic and inelastic scattering components from the scattered radiation, and also to measure the ultrahigh energy resolution inelastic X-ray scattering spectrum in the wide dynamic range. As a notable application, dynamical diffraction effects of thermal diffuse scattering on Si (111) Bragg reflection were observed for the first time using plane wave Mossbauer γ-rays, whose angular divergence was better than 1.0 arcsecond. The measurements are impossible with non-directed γ-rays from conventional radioactive isotopes. A variable bandwidth iron-57 synchrotron Mossbauer radiation will open up new possibilities of advanced dynamics studies with an ultra-high resolution in the range from μeV to neV.

Free Research Field

量子ビーム科学

Academic Significance and Societal Importance of the Research Achievements

バンド幅可変核モノクロメーターによる放射光超単色X線の生成とその応用研究は、世界的に例がなく、本研究で開発したμeV~neV領域の超高エネルギー分解能X線回折分光法は、液体、固体のスローダイナミクス研究の格段の進展につながる革新的量子ビーム利用技術である。今後、開発した計測法が、半導体、誘電体などの単結晶材料から高分子、生体物質のソフトマター物質の機能発現メカニズムの解明を目指した研究に利用展開されることが期待される。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi