2020 Fiscal Year Annual Research Report
Finite type invariants and Milnor invariants for welded string links
Project/Area Number |
19J00006
|
Research Institution | Osaka University |
Principal Investigator |
和田 康載 大阪大学, 理学研究科, 特別研究員(PD)
|
Project Period (FY) |
2019-04-25 – 2022-03-31
|
Keywords | 仮想絡み目 / ウェルデッド絡み目 / Dabkowski-Sahi不変量 / 4-move / CF-move |
Outline of Annual Research Achievements |
本年度は、Dabkowski-Sahi不変量と呼ばれる絡み目の不変量を用いて、(ウェルデッド)絡み目に対して4-moveと呼ばれる局所変形に関する研究を行なった。Dabkowski-Sahi不変量は、絡み目補空間の基本群のある商群として定義され、4-moveで不変であるという性質をもつ。この不変量は絡み目を区別するための強力な不変量である。一方で、与えられた二つの絡み目のDabkowski-Sahi不変量が同型か否かを判定することは一般に難しく、その判定法を開発することは重要な課題である。そこで、津田塾大学の宮澤治子氏および早稲田大学の安原晃氏との共同研究で、与えられた絡み目と、自明な絡み目のDabkowski-Sahi不変量が同型であるための必要条件を与えた。そして、与えられた絡み目と自明な絡み目が4-moveで移り合うための必要条件を与えた。これらの結果を絡み目の一般化であるウェルデッド絡み目へ拡張することで、絡み数が0であり、4-moveの有限列で自明な2成分絡み目に移り合えない、2成分ウェルデッド絡み目が存在することを証明した。以上の研究成果は共著論文としてまとめられ、査読付き国際学術雑誌へ現在投稿中である。 また、仮想絡み目に対してCF-moveと呼ばれる局所変形に関する研究も行なった。この局所変形は、T. Oikawaにより導入され、仮想結び目に対する結び目解消操作になることが示された。さらに、2成分仮想絡み目のCF-moveによる分類が与えられた。この結果の拡張として、任意の成分数の奇仮想絡み目および概奇仮想絡み目、そして、3成分偶仮想絡み目のCF-moveによる分類を与えた。これにより、3成分仮想絡み目のCF-moveによる完全分類を与えることに成功した。以上の研究成果は単著論文としてまとめられ、査読付き国際学術雑誌へ現在投稿中である。
|
Research Progress Status |
翌年度、交付申請を辞退するため、記入しない。
|
Strategy for Future Research Activity |
翌年度、交付申請を辞退するため、記入しない。
|