• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Model Averaging for Ultra-High Dimensional Data: Theory, Methods, and Applications

Research Project

  • PDF
Project/Area Number 19K01582
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 07030:Economic statistics-related
Research InstitutionOtaru University of Commerce

Principal Investigator

LIU QINGFENG  小樽商科大学, 商学部, 教授 (60378958)

Project Period (FY) 2019-04-01 – 2022-03-31
Keywordsモデル平均 / モデル選択 / 非線形モデル / 超高次元データ
Outline of Final Research Achievements

We developed several novel model averaging methods, and provided a solution to the high computational cost issue of model averaging. The achievements include model averaging method of OLS and GLS estimators, model averaging method of nonlinear model, model averaging method for GARCH-type models and model averaging method for Ultra-High Dimensional Data.

Free Research Field

経済統計学

Academic Significance and Societal Importance of the Research Achievements

本研究の成果は、モデル平均法の分野では国際的に最先端の課題のチャレンジで、当該分野の発展に大きく貢献していると言える。ビッグデータの時代において、大規模データに適したデータ解析の方法を提供した。学術と社会の発展に技術の面で寄与した。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi