• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

A Study on the Development and Application of Social Welfare Evaluation Methods Reflecting Multidimensional Attributes

Research Project

  • PDF
Project/Area Number 19K01694
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 07050:Public economics and labor economics-related
Research InstitutionUniversity of Toyama

Principal Investigator

Nakamura Kazuyuki  富山大学, 学術研究部社会科学系, 教授 (60262490)

Project Period (FY) 2019-04-01 – 2023-03-31
Keywords社会厚生 / 複数属性に基づく厚生評価 / ローレンツ支配基準
Outline of Final Research Achievements

This study expands the evaluation criteria for social welfare based on multiple attributes proposed so far and developed a simple and practical method for evaluating and comparing the level of social welfare. In addition, examples of applying the developed indicators to regional and global economies were presented.
Specifically, firstly, we identified the conditions that characterize the relationship between income distribution and the voluntary supply of public goods. Secondly, we developed a method for comparing welfare by considering the weights given to each economic agent and presented an example of its application to regional economic analysis. Thirdly, we showed the extension of the sequential generalized Lorenz dominance criterion to multivariate and its application examples. Fourthly, we proposed a method for evaluating the ranking of social welfare of each country based on HDI and SDGs indicators.

Free Research Field

経済学

Academic Significance and Societal Importance of the Research Achievements

経済主体間の格差の実態を明らかにし,その社会厚生上の含意を考えることは,学術のみならず政策立案においても大きな関心事である.近年ではHDI(人間開発指標)のような複数属性に基づく厚生評価が注目されるとともに,SDGsのような世界全体の持続可能性を多面的に評価することの重要性も強調されている.
本研究では,これまで理論的な精緻化と拡張が図られてきた複数属性に基づく社会厚生の評価手法をさらに拡張するとともに,実際の評価方法を構築するとともに応用事例を示すことで政策形成における利用可能性を示した.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi