2021 Fiscal Year Final Research Report
Development and Evaluation of a Instruction Support System for Self-regulated Learning Skills
Project/Area Number |
19K03066
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 09070:Educational technology-related
|
Research Institution | Tokyo University of Science |
Principal Investigator |
Watanabe Yuki 東京理科大学, 教育支援機構, 教授 (50570090)
|
Co-Investigator(Kenkyū-buntansha) |
御園 真史 島根大学, 学術研究院教育学系, 准教授 (60467040)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Keywords | 教育工学 / 自己調整学習 / ナッジ / 数学教育 / インストラクショナルデザイン / ICT活用教育 / アクティブラーニング |
Outline of Final Research Achievements |
This research aimed to develop and evaluate a system that encourages active learning among learners while each learner browses class material distributed on their tablet and writes notes and highlights in class. We designed the system to encourage learning by applying nudge theory and visualizing how others learn. The evaluation results showed that visualization of learning improves learners’ sense of classroom community and promotes note-taking and comprehension. Furthermore, we indicated that the instructor could select the teaching strategy based on visualizing the learners’ unclear parts. These results suggest that the system’s visualization can promote active learning and support the Performance phase of the self-regulation cycle.
|
Free Research Field |
教育工学
|
Academic Significance and Societal Importance of the Research Achievements |
これまでのナッジ理論の教育利用は,教育方針に留まっており,本研究におけるナッジがアクティブラーニングや自己調整学習支援といった教授学習支援に有効である可能性が示されたことは,学術的に大きな意義があると考える.また,Learning Analytics研究は授業者の負担軽減に関する研究が多く,学習者自身が学習を調整する能力を習得するために活用した本研究は,教育のデジタル・トランスフォーメーションや教育ビッグデータ利活用など,EdTechに関する研究の発展の一助となりえる.
|