• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Research-status Report

スーパー量子群がつなぐ2次元共形場理論と1次元ハバード模型

Research Project

Project/Area Number 19K03421
Research InstitutionUniversity of Fukui

Principal Investigator

松本 拓也  福井大学, 学術研究院工学系部門, 准教授 (50748803)

Project Period (FY) 2019-04-01 – 2025-03-31
Keywords2次元共形場理論 / スクリーニング作用素 / 量子群
Outline of Annual Research Achievements

本研究は1次元ハバード模型と2次元共形場理論の関係を、超対称性を持つ量子群、すなわちスーパー量子群の観点からとらえることを目標にしている。特に今年度は、2次元共形場理論からどのように量子群の構造が生まれうるのかを中心に研究を行った。
特に興味深いのは、正の有理レベルを呼ばれる、ある有理数を中心電荷にもつ共形場理論と、対応する量子群の具体的記述である。前者の共形場理論は正の有理レベルにおける2次元共形場理論として知られる。
一般に、2次元共形場理論は無限次元のビラソロ代数を対称性としてもつ場の量子論であり、このビラソロ代数を可換な作用素がスクリーニング作用素である。ビラソロ代数の表現論の立場からは、ビラソロ加群の準同型写像に他ならない。
このことから、ビラソロ加群は同時にスクリーニング作用素の加群としても見なせる。したがって、スクリーニング作用素のなす代数構造を調べることは2次元共形場理論の観点からも重要である。実際、Felderの先行研究から、2つのスクリーニング作用素の合成はゼロ写像であることが指摘され、これによって定まる第0コホモロジーとしてBelevin, Plakov, Zamolodchikovらによるミニマル模型が特徴づけられる。一方、上述の正の有理レベルにおける2次元共形場理論は、スクリーニング作用素の核として定義される。正の有理レベルにおける2次元共形場理論におけるスクリーニング作用素のなす代数は、ある種の1の冪根における量子群であるとFeiginらによって予想されているが、その共形場理論側からの具体的構成は明らかでない。
今年度は、これらのスクリーニング作用素の交換関係について具体的計算を行ったが、一般的な結果は得られていない。

Current Status of Research Progress
Current Status of Research Progress

3: Progress in research has been slightly delayed.

Reason

今年度は、正の有理レベルにおける2次元共形場理論に表れる量子群対称性を具体的に記述することを目標としていた。それはある種の1の冪根における量子群であり、自然に超対称性を持つもではないかと期待された。しかしながら、実験的な計算から一般的な定式化へ昇華するには至っていない。
具体的には、Felderによって指摘されたスクリーニング作用素の冪ゼロ性を確認することから始めた。Felderの論文ではFeigin, Fucksらによるビラソロ表現論の帰結として冪ゼロ性を証明しているが、直接計算による別証明を試みた。
理由としては、1の冪根における量子群は、Lusztigの大きな量子群と呼ばれる、ある種の対称性の拡大が起こる。そのことを2次元共形場理論の側から原理的に構成することを期待したためである。
方法としては、スクリーニング作用素がボソンによる自由場表示を通してジャック多項式で記述されることを利用した。これにより、スクリーニング作用素の冪ゼロ性は、ジャック多項式の組み合わせ論的計算に帰着する。結果として、いくつかのスクリーニング作用素に関しては冪ゼロ性を確認できた。しかし、より一般の場合ではより煩雑になり計算を実行することが困難であることが認識された。

Strategy for Future Research Activity

前項の記述した通り、スクリーニング作用素の冪ゼロ性をボソンの自由場表示によって具体的に計算することは、一般には難しい。
そこで、微分方程式の立場から調べたい。Belevin, Plyakov, Zamolodchikov(BPZ)のミニマル模型で本質的であったのは、ビラソロ主要場からなる相関関数はその子孫場に特異状態を含むとき、確定特異点型微分方程式、いわゆるFuchs型の常微分方程式を満足することであった。 さらにTsuchiya-Kanieでは、それら相関関数のみたす微分方程式の解空間の基底が、具体的に構成できることを根拠とし、ビラソロ主要場の合成可能性を証明し、常微分方程式の解の解析接続から量子群のR行列が従うことを見出した。次数の低いところででは、Gaussの超幾何関数とその接続問題が本質的であり、それらはすでにBPZのミニマル模型でも指摘されていることである。
今回の我々の目的も、相関関数(または共形ブロック)とそれが従う微分方程式の枠組みで論じるのが正しいように思われる。今後は、これらの観点からも解析を進めたい。

Causes of Carryover

コロナ禍以降、オンライン型の研究会が増えてため、当初予定していた出張が中止となったこと。また、本研究課題の期間中に所属が変わり、本務校での業務に追われたことなどが理由として挙げられる。

  • Research Products

    (1 results)

All 2023

All Journal Article (1 results) (of which Peer Reviewed: 1 results)

  • [Journal Article] Drinfeld realization of the centrally extended psl(2|2) Yangian algebra with the manifest coproducts2023

    • Author(s)
      Matsumoto Takuya
    • Journal Title

      Journal of Mathematical Physics

      Volume: 64 Pages: 1, 30

    • DOI

      10.1063/5.0124333

    • Peer Reviewed

URL: 

Published: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi