2023 Fiscal Year Final Research Report
Research on singularities of algebraic varieties
Project/Area Number |
19K03428
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 11010:Algebra-related
|
Research Institution | The University of Tokyo |
Principal Investigator |
Ishii Shihoko 東京大学, 大学院数理科学研究科, 特任教授 (60202933)
|
Project Period (FY) |
2019-04-01 – 2024-03-31
|
Keywords | singularities / minimal log discrepancy / log canonical threshold / arc space |
Outline of Final Research Achievements |
I researched invariants of a pair consisting of a smooth variety and a coherent ideal. The achievements are the following: 1. If the ideal is ``general" on a 3-dimensional variety, then the invariant mld is computed by two weighted blowups. 2. We associate a pair in positive characteristic to a pair in characteristic 0, that inherits the properties of the pair. Here, the pair in characteristic 0 consists of a fractional ideal instead of an ideal. The next goal is to study fractional ideals in characteristic 0.
|
Free Research Field |
代数幾何学
|
Academic Significance and Societal Importance of the Research Achievements |
対の不変数は無限個の対象を使って定義されることが多い.例えば mld は全てのprime divisor 上のlog discrepancies の infimum で定義される.これを有限個の対象を調べるだけで不変数が計算できる,ということを示しているのが上記 1 の結果である. 標数0の多様体については,色々な良い性質が成り立ち,対の不変数についても計算がしやすいが,正標数の多様体については多くの困難がある.上記2の結果は,困難な正標数の研究をより易しい標数0の研究に帰着させる第一歩である.
|