• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Research-status Report

大きい体に値をとるアーベル多様体のねじれ点の考察

Research Project

Project/Area Number 19K03433
Research InstitutionKanagawa University

Principal Investigator

小関 祥康  神奈川大学, 理学部, 准教授 (00614041)

Project Period (FY) 2019-04-01 – 2024-03-31
Keywordsアーベル多様体
Outline of Annual Research Achievements

本研究の目的は、p進局所体上定義されたアーベル多様体の、「適当な十分大きい無限次拡大体」に値を取るMordell-Weil群を考えたときにそのねじれ部分群の有限性や可除部分群の消滅性について考察をすることである。本年度は特にねじれ部分の有限性問題に力を入れて取り組み、結果としては想定していた以上の大きな進展を得ることができた。この点について以下に説明する。
(1)ねじれ部分群の有限性について:与えられたp進局所体定義されたアーベル多様体(あるいはより一般に可換代数群)の、Lubin-Tate拡大体に値を取るMordell-Weil 群のねじれ部分群の有限性について考察した論文を前年度の時点で投稿していた。数度の軽微な修正を重ねた後、今年度初期に無事、論文誌「the Journal of the Mathematical Society of Japan」に受理された。
(2)上記の(1)で得られた論文の成果は適当なアーベル多様体のねじれ部分群が有限であるという類の主張だが、その具体的な位数がどの程度大きなものとなるのかということについては全く分かっていなかった。しかし本年度はその位数に関して、CMという仮定を必要とするものの、上限を評価する式を与えるという一定の成果を得ることができた。このような結果を一気に得られるとは期待していなかったため、大きな進展があったといえるのではないだろうか。

Current Status of Research Progress
Current Status of Research Progress

1: Research has progressed more than it was originally planned.

Reason

アーベル多様体の適当なねじれ部分群の有限性について、有限性を大きく上回る位数の上限の具体的値への手掛かりを得ることができたため。すでにプレプリントとしてアーカイブにあげてはいるが、今の時点で得られている上限の評価はまだ改良できると考えており、今後につながる直近の課題も数多く得ることができた。以上の理由により「当初の計画以上に進展している」と判断した。

Strategy for Future Research Activity

まずは上で述べたねじれ部分の位数の上限を評価する式を改良していきたい。必要となれば解析数論にもより深く関わっていきたい。また、この評価式はCMをもつアーベル多様体に限定されている。この仮定を外すことができないか、議論を見直していきたい。

Causes of Carryover

本研究課題では旅費に最も重きを置いて研究費を申請している。しかし今年度前半までは新型コロナウイルスへの感染防止のために出張を意識して抑えていたため、前年度の繰り越し金まで使用させていただく必要がなかった。

  • Research Products

    (3 results)

All 2023 Other

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (1 results) Remarks (1 results)

  • [Journal Article] Torsion of algebraic groups and iterate extensions associated with Lubin--Tate formal groups2023

    • Author(s)
      Yoshiyasu Ozeki
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: 75 Pages: 735-759

    • DOI

      10.2969/jmsj/87238723

    • Peer Reviewed
  • [Presentation] Bounds on torsion of CM abelian varieties over local fields with values in cyclotomic extensions2023

    • Author(s)
      小関祥康
    • Organizer
      九州代数的整数論2023
  • [Remarks] 小関祥康のホームページ

    • URL

      https://www.sci.kanagawa-u.ac.jp/math-phys/yozeki/index.html

URL: 

Published: 2023-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi