• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Research-status Report

Adiabatic limits in geometric quantization and affine geometry

Research Project

Project/Area Number 19K03479
Research InstitutionMeiji University

Principal Investigator

吉田 尚彦  明治大学, 理工学部, 専任講師 (70451903)

Project Period (FY) 2019-04-01 – 2025-03-31
KeywordsLagrangian fibration / 自己同形群 / 正則L2表現
Outline of Annual Research Achievements

完備な底空間をもつ非特異Lagrangian torus fibration の全空間がファイバー方向に不変で整合的な複素構造を許容する場合に、Lagrangian torus fibration の対称性について研究し、以下の結果を得た。
1. 完備な底空間をもつ非特異Lagrangian torus fibrationの全空間上に、ファイバー方向に不変で整合的な複素構造を1つ固定する。このとき、底空間の自己同型写像が全空間のKahler構造を保つ自己同型写像に持ち上がるための必要十分条件を得た。また、初期条件をみたす持ち上げは一意であることも分かった。
2. 完備な底空間をもつ非特異Lagrangian torus fibrationの全空間上のファイバー方向に不変で整合的な複素構造のモジュライは、非退化対称行列に値をとる底空間の普遍被覆上の滑らかな写像である条件を持つもののモジュライと同一視出来ることが分かった。
3. 完備な底空間をもつ非特異Lagrangian torus fibrationに前量子化束がある場合、これらの構造を全て保つ自己同型写像は前量子化束の正則L2 切断全体の空間へユニタリ作用素をして作用する。特に、このような自己同型写像全体のなす群(或いはその部分群)の正則L2 切断全体の空間へのユニタリ表現が得られる。正則L2 切断の空間については、これまでの研究で、複素構造がある技術的な条件をみたす場合、完全直交系が具体的に構成できる。今年度は、この完全直交系を利用して、この表現の既約分解を得られた。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

今年度は、完備な底空間をもつ非特異Lagrangian torus fibration の全空間が複素構造を許容する場合に、Lagrangian torus fibration の対称性について研究し、底空間の自己同型写像が全空間のKahler構造を保つ自己同型写像に持ち上がる為の必要十分条件を得ることが出来た。また、前量子化束がある場合、複素構造に関するある技術的な条件の下で、これらの構造を全て保つ自己同型写像のなす群の正則L2 切断全体の空間へのユニタリ表現の既約分解が得られた。さらに、ファイバー方向に不変で整合的な複素構造のモジュライについて、理解を深めることが出来た。
以上のことから、新型コロナウイルスの影響で生じた研究の遅れを、ある程度、挽回することが出来たと考えている。

Strategy for Future Research Activity

今年度得られた研究結果を踏まえて、以下の計画を実施したい。
(1) 研究実績の概要 3. で述べた自己同型群の正則L2表現に関して、まずは具体例を考察し、自己同形群の部分群としてどのような群が現れるのかを調べる。次に、それらの群の正則L2表現の既約成分として、どのような表現が現れるかを調べる。
(2) 先行研究では、トーラスTの余接束への離散群作用による商として得られるLagrangeファイバー束の幾何学的量子化を考えていた。一方で、トーラスTの余接 束にはTの部分トーラスのHamilton作用もあり、離散群作用の代わりに、この作用によるシンプレクティックカットを考えることで、非退化楕円型特異点を許容 する特異Lagrangeファイバー束が得られる。この場合にも、先行研究と同様の研究を行う。特に、特異ファイバーの近傍で二乗可積分な正則切断の断熱極限を考 察する。

Causes of Carryover

2020年から2022年にかけて、新型コロナウイルス感染症の影響で、渡航しての研究打ち合わせ、参加予定であった国内外の研究集会、学会が中止、或いはオンラ イン開催になったため、旅費の支出がなくなった。研究集会が対面開催に戻り始めているため、新型コロナウイルスの状況を見極めた上で、対面参加をする。

  • Research Products

    (1 results)

All 2024

All Presentation (1 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results)

  • [Presentation] Geometric quantization of Lagrangian torus fibrations and Adiabatic limit2024

    • Author(s)
      吉田尚彦
    • Organizer
      第6回トロピカル幾何ワークショップ
    • Int'l Joint Research / Invited

URL: 

Published: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi