• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Annual Research Report

作用素論に基づいた量子情報理論における幾何学的構造の解明とその応用

Research Project

Project/Area Number 19K03542
Research InstitutionOsaka Kyoiku University

Principal Investigator

瀬尾 祐貴  大阪教育大学, 教育学部, 教授 (90439290)

Co-Investigator(Kenkyū-buntansha) 藤井 淳一  大阪教育大学, 教育学部, 教授 (60135770)
Project Period (FY) 2019-04-01 – 2022-03-31
Keywords情報幾何 / Renyi ダイバージェンス / 作用素不等式 / 行列幾何平均 / 正定値行列
Outline of Annual Research Achievements

近年、工学、情報幾何学、量子情報理論などの分野の作用素論的な枠組みの構築の密接な関連の必要性が喫緊の課題として挙がっているが、情報幾何学や量子情報理論におけるさまざまな幾何学的内容は、ヒルベルト空間上の作用素の枠組みの中では、必ずしも具体的に明らかになっていない。また、行列や作用素の文脈での様々なエントロピーやダイバージェンスなどの評価を中心とした研究も進んでいるとは言えない。
本研究では、これまでに、この課題に取り組むために、2変数版の作用素ノルムを用いたAndo-Hiai型不等式の多変数幾何平均への拡張とその応用について、一定の成果を得え、さらに、量子情報理論におけるTsallis相対エントロピーの諸性質を解明し、非可換版の幾何平均の様相をノルム不等式の枠組みで明らかにした。藤井-亀井による量子相対エントロピーの1変数拡張版を導入して、2つのパラメーター間の関係を導くことができた。
さて、統計的な観点から、その量子化として、トレース1の正定値行列、即ち、密度行列のなす微分可能な多様体の構造解析は極めて重要である。量子情報幾何学における正定値行列全体のなす微分可能多様体上の2点間の分離度を測るための指標として、量子Renyiダイバージェンスが様々な観点から提案されているが、日合により定式化された量子Renyiダイバージェンスを私たちがこれまでに研究をしていた非可換幾何平均の考えをもとに再構築し、そのダイバージェンスとしての性質を調べ、そのほかの量子Renyiダイバージェンスとの関係について、Mond-Pecaricの手法より、そのスペクトルの最大値と最小値を用いて、評価することができた。これにより、密度行列全体のなす多様体上の幾何構造についての考察がさらに深まると考えている。

  • Research Products

    (11 results)

All 2022 2021

All Journal Article (8 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 8 results,  Open Access: 1 results) Presentation (3 results)

  • [Journal Article] Determinant for positive operators and operator geometric means2022

    • Author(s)
      Sora Hiramatsu and Yuki Seo
    • Journal Title

      Analysis and Mathematical Physics

      Volume: 12 Pages: -

    • DOI

      10.1007/s13324-022-00663-z

    • Peer Reviewed
  • [Journal Article] Jointly convex mappings related to Lieb’s theorem and Minkowski type operator inequalities2021

    • Author(s)
      Mohsen Kian and Yuki Seo
    • Journal Title

      Analysis and Mathematical Physics

      Volume: 11 Pages: -

    • DOI

      10.1007/s13324-021-00513-4

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] The upper boundary for the ratio between n-variable operator power means2021

    • Author(s)
      Yuki Seo
    • Journal Title

      Mathematical Inequalities & Applications

      Volume: 24 Pages: 751, 757

    • DOI

      10.7153/mia-2021-24-52

    • Peer Reviewed
  • [Journal Article] Determinant for positive operators and Oppenheim’s inequality2021

    • Author(s)
      Sora Hiramatsu and Yuki Seo
    • Journal Title

      Journal of Mathematical Inequalities

      Volume: 15 Pages: 1637, 1645

    • DOI

      10.7153/jmi-2021-15-112

    • Peer Reviewed / Open Access
  • [Journal Article] 数学的な考え方の育成について-Specht比の冪単調増加性を基に-2021

    • Author(s)
      平松空 瀬尾祐貴
    • Journal Title

      数学教育研究

      Volume: 50 Pages: 83, 91

    • Peer Reviewed
  • [Journal Article] 圏論的「核」の解釈を巡って2021

    • Author(s)
      藤井淳一
    • Journal Title

      大阪教育大学紀要. 人文社会科学・自然科学

      Volume: 69 Pages: 137, 152

    • DOI

      10.32287/td00031771

    • Peer Reviewed
  • [Journal Article] 射影空間と比2021

    • Author(s)
      藤井淳一
    • Journal Title

      数学教育研究

      Volume: 50 Pages: 93, 99

    • Peer Reviewed
  • [Journal Article] Fibonacci anyon における TQC 再説補足2021

    • Author(s)
      藤井淳一
    • Journal Title

      数学教育研究

      Volume: 50 Pages: 101, 106

    • Peer Reviewed
  • [Presentation] 一般化Tsallis相対エントロピーに関する行列トレース不等式について2022

    • Author(s)
      瀬尾祐貴
    • Organizer
      日本数学会 2022年度春季総合分科会(函数解析学分科会)
  • [Presentation] n-変数作用素べき平均の商に対する上限について2021

    • Author(s)
      瀬尾祐貴
    • Organizer
      日本数学会 2021年度秋季総合分科会(函数解析学分科会)
  • [Presentation] 正作用素の行列式とOppenheiemの不等式2021

    • Author(s)
      平松空 瀬尾祐貴
    • Organizer
      日本数学会 2021年度秋季総合分科会(函数解析学分科会)

URL: 

Published: 2022-12-28  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi