• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Research-status Report

非線形分散型方程式におけるソリトン解の振動現象と漸近挙動の研究

Research Project

Project/Area Number 19K03579
Research InstitutionChiba University

Principal Investigator

前田 昌也  千葉大学, 大学院理学研究院, 准教授 (40615001)

Project Period (FY) 2019-04-01 – 2024-03-31
Keywords国際情報交換 / 非線形シュレディンガー方程式 / ソリトン
Outline of Annual Research Achievements

本年度の研究成果は以下の二点である。一つ目はビリアル等式をもちいたデルタポテンシャルをもつ非線形シュレディンガー方程式の定在波解の漸近安定性解析であり、二つ目は改良された定在波解をもちいた既存の方法の改良である。
一つ目のビリアル等式に関しては、デルタポテンシャルをもつ非線形シュレディンガー方程式の定在波解に適用することにより、任意のべき乗非線形項に関してその漸近安定性を示すことができた。ビリアル等式を用いることのメリットはストリッカーツ評価等の線形評価の方法では到達が難しいと考えられる低い冪の非線形項も扱うことが可能となることである。この方法では散乱を示すことができないが、散乱を含めた漸近安定性解析への中間的なステップと考えられる。一方で現在までのところデルタポテンシャル以外のポテンシャルについてビリアル等式の応用はできておらずこの先の課題となる。
二つ目は改良された定在波解を用いた既存の(ストリッカーツ評価を用いた)漸近安定性解析の証明の改良である。これまでの方法ではフェルミ黄金律を扱うためにシステマティックではあるが非常に困難を伴うバーコフ標準形の理論を用いる必要があった。改良された定在波解は準周期的となる近似解であり、これを構成することによりバーコフ標準形理論を経由せず直接フェルミ黄金律を導出することができるようになった。また、この理論の副産物としてこれまで具体的に計算することができなかったフェルミ黄金律の係数も計算することができるようになった。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

当初の予定通りに結果を出すことができているため。

Strategy for Future Research Activity

現在行っている改良された定在波解の理論をキンク解や減衰が指数的長時間かかるようなモデルに対して適用できないかを探っていく。また、ビリアル等式の適用範囲の拡大についても研究を行う。

Causes of Carryover

台風並びに新型コロナウイルスの影響により参加を予定していた研究集会が中止となったため。そのため次年度には今年度予定していた出張を行うことにより今年度分の未使用額を使用する。

  • Research Products

    (3 results)

All 2019 Other

All Int'l Joint Research (1 results) Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results) Presentation (1 results) (of which Invited: 1 results)

  • [Int'l Joint Research] トリエステ大学(イタリア)

    • Country Name
      ITALY
    • Counterpart Institution
      トリエステ大学
  • [Journal Article] On stability of small solitons of the 1-D NLS with a trapping delta potential2019

    • Author(s)
      Scipio Cuccagna, Masaya Maeda
    • Journal Title

      SIAM Journal on Mathematical Analysis

      Volume: 51 Pages: 4311-4331

    • DOI

      doi.org/10.1137/19M1258402

    • Peer Reviewed / Int'l Joint Research
  • [Presentation] On the continuous limit of QWs2019

    • Author(s)
      前田昌也
    • Organizer
      量子シミュレータとしての量子ウォークの数理
    • Invited

URL: 

Published: 2021-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi