2022 Fiscal Year Final Research Report
Generalization of treatment effect using similarity of populations
Project/Area Number |
19K03627
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 12040:Applied mathematics and statistics-related
|
Research Institution | National Hospital Organization Nagoya Medical Center |
Principal Investigator |
Kada Akiko 独立行政法人国立病院機構(名古屋医療センター臨床研究センター), その他部局等, 室長 (70399608)
|
Co-Investigator(Kenkyū-buntansha) |
橋本 大哉 名古屋市立大学, 医薬学総合研究院(医学), 准教授 (50775715)
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Keywords | 対象集団 / 疾患登録 / 外部対照 / 一般化 |
Outline of Final Research Achievements |
Focusing on small clinical trials, we examined methods that use population similarity to generalize or transport treatment effects to a broader population. Simulations confirmed the performance of inverse probability of sampling weighting, g-formula, calibration weighting, and augmented method with doubly-robust estimator. In situations where the number of subjects in a clinical trial is small, the advantage of the method using a doubly-robust estimator was confirmed. Confidence intervals for the restricted mean survival time for small sample sizes were examined by simulation in situations of a single-arm trial. The performance of methods with four different types of transformations was evaluated.
|
Free Research Field |
医療統計
|
Academic Significance and Societal Importance of the Research Achievements |
稀少疾患など対象者数が少ない状況で介入試験を行う場合がある。そのような場合に疾患登録が利用できる状況であれば、対象集団の違いを特定し、解析方法を工夫することで、より広い集団での解釈につながる可能性がある。
|