2021 Fiscal Year Final Research Report
Application of interior penalty methods to mixed finite element method using nonconforming elements
Project/Area Number |
19K03630
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 12040:Applied mathematics and statistics-related
|
Research Institution | The University of Electro-Communications |
Principal Investigator |
Koyama Daisuke 電気通信大学, 大学院情報理工学研究科, 助教 (60251708)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Keywords | 非適合有限要素法 / 内部ペナルティ法 / 重調和方程式 / 事前差異評価 / 事前誤差評価 / 正定値対称行列の条件数 / CG法 / ICCG法 |
Outline of Final Research Achievements |
We studied a numerical method for the boundary value problem of the biharmonic equation which is obtained by applying the interior penalty method to the HJ method. We call the numerical method the IP method. We mathematically derived a priori estimates with respect to the mesh parameter and the penalty parameter for the difference between solutions of the HJ method and of the IP method and for the error of the IP method. As a numerical solver for the system of linear equations arising in the IP method, we consider the solver obtained by applying the CG method to the dual problem (a system of linear equations with respect to the displacement), and by applying the ICCG method to a system of linear equations appearing in the inner iteration of the CG method. Through mathematical analysis and some numerical experiments we showed that the number of iterations of the solver is independent of the penalty parameter.
|
Free Research Field |
偏微分方程式の数値解析
|
Academic Significance and Societal Importance of the Research Achievements |
重調和方程式の境界値問題は板曲げの数理モデルであり,構造力学分野において重要である.そのような問題の数値解法の性質を数学的に明らかにすることには社会的意義がある.本研究で考察したIP法は,有限要素法で一番オーソドックスなラグランジュ要素を用いることができ,HJ法に比して簡便となる.IP法では,ペナルティ・パラメータをいかにとるかが問題となるが.近似解が最適な収束率を持つことを保証するためのペナルティ・パラメータのより良い選び方を与えていることに意義がある.また,IP法で生ずる連立一次方程式の解法として,その計算時間がペナルティ・パラメータの選び方に依らない解法を明らかにしたことにも意義がある.
|