2022 Fiscal Year Research-status Report
Color confinemet and non-perturbative mechanism of QCD due to gauge-field singularities
Project/Area Number |
19K03848
|
Research Institution | Osaka University |
Principal Investigator |
鈴木 恒雄 大阪大学, 核物理研究センター, 協同研究員 (60019502)
|
Project Period (FY) |
2019-04-01 – 2024-03-31
|
Keywords | QCD / カラーの閉じ込め / モノポール / 格子QCD / 計算機シミュレーション |
Outline of Annual Research Achievements |
SU3QCDで、新しいモノポールが本当に連続極限を持っているかどうかの研究に本格的に取り組んだ。前年度は、追加の近似なしに厳密に計算することを目的としたこともあり、24^3x4という小さな格子上でのみ有望な結果を得られたが、これでは、無限大空間での連続極限で重要な役割をしてしているかどうかは、不明である。 そのために、今年度は、$48^4$という大きな格子上で、相互作用定数ベータは、2.3---3.5までの13点で(1)まずは、モノポールによる閉じ込めから期待される弦定数が、可換部分のポテンシャルやモノポール部分のポテンシャルから決まる弦定数と厳密に一致するかどうかをなめらかなMAGという部分固定のもとで、調べた。その結果、可換部分の弦定数とはベータが2.8-3.5の範囲で、モノポール部分の弦定数とは、3.2-3.5の範囲で一致することを確かめ、連続極限の存在を示すAsymptotic scalingを満たしていることを確かめた。 次に、モノポールに関するblock-spin変換に基づく繰り込み群という筆者たちが開発してきた手法で、モノポールの密度と有効モノポール作用のふるまいを調べ、これらの物理量が、本来格子間隔$a(\beta)$とブロックスピン変換の回数$n$との2点関数であるが、実際は、$b=na(\beta)$のみの関数となること、つまりSU2と同様にきれいなscalingを満たすことを示した。このscalingの振る舞いは、まさに連続極限を示す結果であり、現在論文としてまとめ投稿中である。
|
Current Status of Research Progress |
Current Status of Research Progress
3: Progress in research has been slightly delayed.
Reason
長年共同研究をしてきている高知大学の仲間が、昨年度当初に病気のため物理研究ができなくなり、ほぼ1年間一人で研究をせざるを得なくなった。そのため、計算機コードの開発やバグ取りにとても時間がかかり、当初予定していたfull QCDでの研究などができなかった。
|
Strategy for Future Research Activity |
主として3点に絞って取り組む。 1.これまでの研究は、軽いクォークが入っていないクエンチ近似での計算であった。今年度は、JLDGというデータベースに公開されている軽いクォークの入った大きな格子でのデータがあるのでそれを使って、軽いクォークがモノポールにどのような影響を与えるか調べる。 2.ビアンキ恒等式の破れからくるモノポールが存在するとすると標準模型でのもう一つの未解決問題であるstrongCP問題に影響が出る。その効果を調べる。 3.gradient-flow法という格子上での配位を滑らかにする手法が注目を浴びているが、その手法を使って、モノポールがとあり扱えるかどうか調べる。
|
Causes of Carryover |
一番大きな理由は、コロナの流行のため、4年度夏の出席を予定していた2つの国際会議はすべて現地参加形式に変更となったが、日本では7-9月に大流行となってとても参加できる状況でなく参加できなかった。 国内旅行もほぼできなかった。 さらに、共同研究者が、病気のため1年間参加できなくなり、計算機の有料利用や物品購入が生じなかった。
|