2021 Fiscal Year Final Research Report
3D modeling construction of transformation process of microstructure / crystal structure aiming at improvement of fatigue strength of joint locomotorium
Project/Area Number |
19K04096
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 18010:Mechanics of materials and materials-related
|
Research Institution | Sophia University |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Keywords | チタン合金 / 積層造形 / 疲労特性 / 組織・微細構造 / 変態プロセス / 関節運動器 |
Outline of Final Research Achievements |
Custom-made implants tailored to the skeleton and symptoms of individual patient joints are required. In current 3D orthopedic 3D sculptural joint devices, residual defects during sculpting significantly reduce fatigue strength. Therefore, the practical range is limited. In this study, we directly modeled a titanium alloy 3D modeling custom articulated locomotor device. Then, a fatigue-resistant strengthening process was constructed by nano - crystallization of the structure and crystal phase transformation by induction hardening for a short time and shot peening treatment.
|
Free Research Field |
環境材料強度学
|
Academic Significance and Societal Importance of the Research Achievements |
カスタムメイド医療を目指す金属粉末積層造形技術の導入は,基本機能を維持しつつ,患者個々の骨形状に見合う性能及び構造となるよう最適化されたヒトに優しいインプラント技術である.積層造形は低侵襲手術,早期リハビリ,長寿命化インプラント,再手術の減少,簡易手術と成績向上等,多くの患者にメリットがある. 本研究ではTi-6Al-4V合金を対象に,電子ビーム積層造形法で造形・創製した.そして,短時間高周波焼入れとショットピーニング処理で残留欠陥の除去及び更なる疲労強度の向上を目指した.すなわち,造形材の安心安全を担保可能であることを検証するための疲労強度・寿命評価を実施し,そのメカニズムを明らかにした.
|