2021 Fiscal Year Final Research Report
Development of a heat exchanger utilizing the properties of the polyimide mixture for highly efficient ultra-low-temperature cooling
Project/Area Number |
19K04251
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 19020:Thermal engineering-related
|
Research Institution | National Institute of Advanced Industrial Science and Technology |
Principal Investigator |
Nakagawa Hisashi 国立研究開発法人産業技術総合研究所, 計量標準総合センター, 主任研究員 (90392638)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Keywords | 熱交換器 / Kapitza抵抗 / 希釈冷凍機 / ポリイミド微粒子 / ポリグリコール酸生分解性プラスチック / 銀微粒子 / 多孔質体 / 高温圧縮法 |
Outline of Final Research Achievements |
This study aimed to create a heat exchanger with high efficiency for ultra-low temperature cooling using properties of a polyimide (PI) mixture of PI and polyglycolic acid biodegradable plastic filaments (PGAF), and also to elucidate the Kapitza heat transport mechanism between porous materials and superfluid helium-4. These results will lead to innovative high-performance dilution refrigerators, which are indispensable for stable operation of superconducting circuit quantum computers. Only PGAF could be removed from the sintered PI mixture to create a heat exchange pathway. Kapitza resistance between sinters made of fine silver particles having different particle sizes and superfluid helium-4 was investigated in the temperature range of 50 mK to 0.7 K. Despite the rough surface of porous material, no anomalous Kapitza resistance was observed, and the resistance showed a novel temperature dependence on a power law of temperature.
|
Free Research Field |
低温物理・工学
|
Academic Significance and Societal Importance of the Research Achievements |
超伝導回路量子コンピュータには、希釈冷凍機が生成する10 mKの超低温度が不可欠である。表面積の大きな銀焼結体熱交換器は、極低温下において大きな温度差を生むKapitza抵抗を低減し、希釈冷凍機性能を左右するキーデバイスである。本研究では、Kapitza抵抗と熱容量が小さいPIとPGAFを混合したPI混合体の焼結体を用いることで、従来の熱交換器性能を超えるPI多孔質体熱交換器(Piphex)の創出を目指した。量子ビットの大集積化に伴う熱負荷の増大に耐えうる大きな冷凍能力をもつ希釈冷凍機の開発は重要課題である。本研究の成果は、超低温冷却を高効率化し、量子コンピュータの発展に資すると期待される。
|