• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Stochastic non-decomposition based tensor restoration and its application to image and signal processing

Research Project

  • PDF
Project/Area Number 19K04377
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 21020:Communication and network engineering-related
Research InstitutionChiba Institute of Technology

Principal Investigator

Takamichi Miyata  千葉工業大学, 先進工学部, 教授 (90431999)

Project Period (FY) 2019-04-01 – 2023-03-31
Keywordsテンソル復元 / 画像処理 / 信号処理 / 確率的最適化 / テンソル
Outline of Final Research Achievements

Multidimensional signals captured by cameras and sensors, as well as Internet traffic data, may contain degradations such as missing data and noise. Such degradation is a major factor preventing effective use of signals and data, i.e., recognition and knowledge acquisition from the data. To solve this problem, we proposed a method to significantly improve the computational complexity and memory usage of the tensor restoration algorithm without sacrificing the restoration performance by applying a stochastic optimization framework to the non-decomposition tensor restoration algorithm. This framework achieves low-rank tensor approximation with low computational complexity. As a result, the proposed method outperforms existing methods in image restoration and Internet traffic restoration.

Free Research Field

信号処理

Academic Significance and Societal Importance of the Research Achievements

本課題によって得られた研究成果の学術的意義としては非分解型・確率的テンソル復元を実際の問題に応用した多数のアルゴリズムを提案したことや,その際に用いたテンソルノルムの非凸拡張間の関係を明確にしたことなどが挙げられる.また,このような学術的成果は今後,非分解型テンソル復元を自動運転などに用いられる画像認識AIのための前処理や,医療,天文学などの幅広い分野にも応用可能であることから,社会的意義も大きいといえる.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi