2023 Fiscal Year Final Research Report
Establishment of Transmission Line Design Theory using Negative Permeability Materials for Low-Loss and High-Speed Transmission
Project/Area Number |
19K04521
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 21060:Electron device and electronic equipment-related
|
Research Institution | Nagano National College of Technology |
Principal Investigator |
Nakayama Hidetoshi 長野工業高等専門学校, 機械ロボティクス系, 教授 (10390452)
|
Project Period (FY) |
2019-04-01 – 2024-03-31
|
Keywords | 表皮効果 / 高周波伝送線路 / 低損失 / 負透磁率材料 / Cu導体 / NiFe磁性体 / 矩形多層伝送線路 / 円形多層伝送線路 |
Outline of Final Research Achievements |
This research is a new field of application of magnetic permeability in the ultra-high frequency region beyond the ferromagnetic resonance frequency. This project proposes a skin effect suppression line that utilizes negative magnetic permeability characteristics, and was implemented with the aim of reducing loss and delay in high-speed transmission lines. In order to demonstrate the effectiveness of skin effect loss suppression, we have established a design theory for circular and rectangular multilayer transmission lines using negative permeability materials. In the rectangular multilayer structure, we were able to verify the effectiveness of printed wiring against surface roughening. In the circular multilayer structure, it is now possible to calculate the frequency characteristics of S-parameters by taking into account various losses in the coaxial cable. As a result of the above results, we were able to establish a design theory necessary for future research and development.
|
Free Research Field |
高周波磁気応用
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の成果により、負透磁率材料を用いた表皮効果抑制線路の有効性を示すことができ、強磁性共鳴周波数を超えた超高周波領域の透磁率応用分野を新たに開拓する研究として、実用化に必要な設計方法を確立できた。 矩形多層伝送線路では、Cu導体/NiFe磁性体の33層構造で、本電磁界理論の適用により従来理論の設計と比較して、表皮効果による損失を80%まで低減できる効果を示すことができた。円形多層伝送線路では、同軸ケーブルのSパラメータを評価できるようになった。 本研究成果は、従来抑制困難であった表皮効果損失を低減する低損失伝送線路の研究開発に資するものであり、高周波回路の更なる低損失化が期待される。
|