• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Research for optimal evacuation method based on probabilistic flood forecasting with enough lead time

Research Project

  • PDF
Project/Area Number 19K04618
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 22040:Hydroengineering-related
Research InstitutionKobe University

Principal Investigator

Kobayashi Kenichiro  神戸大学, 都市安全研究センター, 准教授 (60420402)

Project Period (FY) 2019-04-01 – 2023-03-31
Keywords超多数アンサンブル / 高解像度浸水計算 / 富岳 / リードタイム / 確率洪水予報 / 2011年新潟福島洪水 / 2020年球磨川洪水
Outline of Final Research Achievements

In this research, the probabilistic flood forecastings were carried out using mega (more than 1000) ensemble simulations. 2011 July Fukushima-Niigata flooding and 2020 July Kumagawa flooding were selected as the test cases. As a result, it was shown that the flood forecasting based on probability in a real sense becomes possible by incraesing the number of ensemble members in the two cases. Likewise, the lead time for the evacuation can be increased to e.g. half day by the mega ensembles. In addition, the very high resolution (1-5m) inundation simulatiosn were carried out with Fugaku supercomputer which suceeded in showing the flood risk in details on the site frontage. Finally, the evacuation behaviour was investigated using multi-agent models. As a result, it was shown that the evacuation considering daily stress (e.g. disable, infectious diseases) becomes possible by having such long lead time.

Free Research Field

水工学

Academic Significance and Societal Importance of the Research Achievements

1000を超える超多数アンサンブルは短期洪水予測の観点からは世界初(あるいは世界初の一つ)であると考えており,アンサンブル数を増やすことにより,特に真の意味での確率洪水予測が可能になり,リードタイムを伸ばすことができた事例を示した.学術的に,気象のカオス現象を反映した洪水予測とは何かを示した事例として意義がある.また,超高解像度計算については,自身のグループで1m解像度標高を取得したことに加えて,最近では兵庫県域全域での1m標高データが公表されたため,今後実社会でも適用されていくと考える.十分なリードタイムがある場合は,社会的弱者や感染症にも配慮した避難が可能な事例についても示すことができた.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi