2021 Fiscal Year Final Research Report
Modification of neuronal function using push-pull system
Project/Area Number |
19K05227
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 28040:Nanobioscience-related
|
Research Institution | Tokyo Metropolitan University |
Principal Investigator |
Kasai Nahoko 東京都立大学, 大学教育センター, 教授 (50393749)
|
Co-Investigator(Kenkyū-buntansha) |
内山 一美 東京都立大学, 都市環境科学研究科, 教授 (40151899)
毛 思鋒 東京都立大学, 都市環境学部, 助教 (40885315)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Keywords | プッシュプルシステム / 単一細胞 / 高感度センシング / 薬物投与 / 機能制御 / 神経成長因子 |
Outline of Final Research Achievements |
Cell-cell communication, the transmission of stimuli received by one cell to adjacent cells, is important for the function and maintenance of life. However, it has been difficult to stimulate only the targeted single cells by applying drugs. In this study, we succeeded in local staining and modification of single cells by the push-pull system to administrate drugs. Furthermore, a gold nanowire sensor fabricated using push-pull system could measure substances released from a single cell, which would detect the functional changes of the cells with high sensitivity. By measuring biomolecules derived from single cells, it would be possible to confirm the behavior of locally modified cells, and will confirm the importance of quantitative analysis in cell-cell interactions. This technology is expected to be applied to ultra-high-sensitivity cancer diagnosis and treatment targeting a single cell, and tailor-made medical treatment by cell examination that does not require pretreatment.
|
Free Research Field |
ナノバイオテクノロジー
|
Academic Significance and Societal Importance of the Research Achievements |
本研究によるプッシュプルシステムは,これまで困難だった,溶液中のマイクロメートルサイズの局所領域に薬物を投与することを可能とする技術である.これまで単一細胞を刺激する場合は,たまたま電極上に成長した細胞への電気刺激や,細胞へ光刺激が用いられてきたが,この手法により,狙った単一細胞に薬物刺激を印可することができるようになった. 本研究では,薬物刺激により単一細胞の局所刺激および機能計測,機能改変を行った.細胞の局所操作・局所診断を目指す基礎技術であり,今後本手法が,前処理不要なガンの極早期診断と治療,ガン転移メカニズムの細胞レベルでの解明などへ展開されることが期待できる.
|