2021 Fiscal Year Final Research Report
A Hybrid Trapped Field Magnet Lens (HTFML): concept and realization
Project/Area Number |
19K05240
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 29010:Applied physical properties-related
|
Research Institution | Iwate University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
内藤 智之 岩手大学, 理工学部, 教授 (40311683)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Keywords | 超伝導バルク磁石 / 磁束ピン止め効果 / 磁気収束効果 / 擬似微小重力環境 / ライフサイエンス応用 |
Outline of Final Research Achievements |
REBaCuO superconducting bulk magnet can trap magnetic field higher than 20 T by “flux pinning effect”. The magnetic lens fabricated by superconducting bulk can concentrate the magnetic flux by “magnetic shielding effect”, in which the magnetic field higher than the applied field can be generated. In this study, by combining two effects, a hybrid trapped field magnet lens (HTFML) made by an all-REBaCuO bulks has been realized experimentally, in which 9.8 T was concentrated from 7 T external field. A new concept of a high-gradient trapped field magnet (HG-TFM) has been proposed and analyzed numerically. The higher magnetic field gradient product of BzdBz/dz = -1930 T2/m was confirmed and the magnetic levitation of bismuth particles and water drop was demonstrated. These devices are applicable in scientific research fields, for example, in the life/medical sciences for protein crystallization as a quasi-microgravity space without natural convection due to gravity.
|
Free Research Field |
応用物理学
|
Academic Significance and Societal Importance of the Research Achievements |
微小重力環境を実現する国際宇宙ステーション(ISS)の利用は2024年までとされている。本研究で開発したハイブリッド型超電導バルク磁石レンズ(HTFML)及び、高磁場勾配超電導バルク磁石(HG-TFM)は、原理的に汎用の10 T級超電導マグネットのおよそ8~16倍となる3000~6000 T2/mという非常に大きな勾配磁場による擬似微小重力環境を地上で構築できる。これらの装置を用いて、重力による自然対流の抑制による結晶欠陥が少ない大型結晶を用いた高分解能結晶構造解析や、容器壁面に制約されない三次元細胞培養を実現し、研究進展が急がれる生命・医科学分野の課題を解決できる可能性が高い。
|