2021 Fiscal Year Final Research Report
Development of transparent antifouling surface with fractal structure using nano-raspberry particles by fabricated by chemically adsorbed monolayers
Project/Area Number |
19K05272
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 29020:Thin film/surface and interfacial physical properties-related
|
Research Institution | Kagawa University |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Keywords | 超撥水性防汚表面 / 化学吸着単分子膜 / ナノ粒子 / 微細凹凸表面 |
Outline of Final Research Achievements |
Raindrops and dirt adhere to the lens surface of a surveillance camera. The fingerprint sticks to the touch screen of the smartphone. These are problems because they deteriorate visibility. The surface of the photovoltaic panel gets dirty with dust. It is a problem because the power generation efficiency decreases. In order to solve these problems, we developed a super water-repellent and highly transparent base material with both translucency and antifouling functions. By combining a fine rugged surface structure (100 nanometers in thickness) and a chemisorbed monolayer (one nanometer in thickness) having a water-repellent functional site, a super water-repellent and highly transparent substrate having translucency and super water-repellency (150 degree or more) was developed.
|
Free Research Field |
薄膜表面改質
|
Academic Significance and Societal Importance of the Research Achievements |
直径100ナノメートルのシリカ粒子を用いた微細凹凸構造の上に、大気圧低温プラズマを用いて酸化亜鉛薄膜の柱状構造を組合せた。また、大きさの異なるシリカ粒子を組み合わせた微細凹凸構造を作製した。それら表面にフッ化炭素系化学吸着単分子膜を形成することによって超撥水性透光性表面を作製できたことは学術的に意義が大きい。現在、世界におけるスマートフォンの出荷台数は20億台を超えた。これら機器のタッチパネルに防汚表面を提供できることは世界的な波及効果が非常に大きい。また、世界の太陽光発電パネルの出荷量は年々伸びており、防汚表面を提供するで維持コストが低減することから、波及効果が期待できる。
|