• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Flexibility and plasticity of the tubulin lattice within assembled microtubules

Research Project

  • PDF
Project/Area Number 19K06602
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 43040:Biophysics-related
Research InstitutionChuo University

Principal Investigator

Kamimura Shinji  中央大学, 理工学部, 教授 (90177585)

Project Period (FY) 2019-04-01 – 2022-03-31
Keywords微小管 / X線繊維回折法 / 小角散乱 / 微小管安定化剤 / 流動配向法 / 負の熱膨張係数 / チューブリン
Outline of Final Research Achievements

We investigated the dynamic changes of X-ray fiber diffraction from brain microtubules (MTs) on rapid cooling at SPring-8. This is the first example to show the temperature-dependent structural dynamics of supramolecular compounds, and we obtained the following four new findings. The first is that MTs have the different rate of shrinkage on cooling in the length and diameter directions, which is a direct proof that tubulin molecules undergo structural changes at low temperature. The second is that 17 degrees is the critical temperature at which the MT structure can be maintained, the third is that the cooling shrinkage rate clearly changed depending on MT stabilizers (paclitaxel and laulimalide), and the fourth is that the difference in structures between depolymerization and repolymerization was observed by investigating diffraction patterns during re-warming. This study would be an epoch-making one that is proposing a new tool to investigate the dynamic features of MT structures.

Free Research Field

生物物理学

Academic Significance and Societal Importance of the Research Achievements

生体分子は独特の高次構造を持ち、金属粒子やポリマー粒子とは異なり、非等方的な構造を持つ。温度変化による熱膨張率もその構造を反映していると期待できる。本研究は、この点を高精度のサブpmスケールで明らかにした最初の研究例となる。研究手法上、冷却しなければならないクライオEMで解明された分子構造を解釈する上で、程度の差はあれ、低温構造変化する生体分子もある点は、考慮すべき新事実である。また、低温条件下で哺乳類の脳微小管は不安定化する性質があるが、その生物物理学的な説明、さらには、より温度順応型の他の真核生物から、哺乳類の微小管が進化して来た理由や分子進化プロセスの理解にもつながると期待している。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi