• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Research-status Report

縮小型事前分布によるベイズ統計的推測の研究

Research Project

Project/Area Number 19K11852
Research InstitutionKobe University

Principal Investigator

丸山 祐造  神戸大学, 経営学研究科, 教授 (30304728)

Project Period (FY) 2019-04-01 – 2022-03-31
Keywords統計学
Outline of Annual Research Achievements

2020年度も2019年度に引き続き多変量正規分布の平均ベクトルの推定問題を考えた。特に分散未知という設定は重回帰分析を正準化したケースとなり,現実のデータ解析でも重要である。既存研究と同様に尺度調整した平均二乗誤差を推定量の性能評価に使う。分散既知の場合と同様に,ベクトルの次元が3以上の場合に標本平均(ベクトル)が非許容的となるスタイン現象が知られている。分散既知の場合には標本平均を改良して許容的な推定量のクラスが知られている。またそのような性質をチェックするための十分条件も整備されている。一方,分散未知の場合には,標本平均を改良して許容的な推定量のクラスは,分散パラメータが局外母数となるために取扱が難しく,特に一般化ベイズ推定量で標本平均を改良して許容的な推定量は知られていなかった。2020年度に次元が3以上を想定した場合にそのような推定量を見つけた。2019年度末の段階では,次元が5以上の場合しか分かっていなかった。小さな差分だと見られるかもしれないが,理論的には大きな進歩である。
事前分布としては分散パートに不変測度という広義の事前分布を想定し,一方平均パートには既存の研究で多く想定されてきた正規分布の尺度混合分布を想定した。その尺度混合分布の超母数の設定を工夫すると,通常積分の比として表現されるベイズ推定量において積分が解析的に計算できて,極めてシンプルな推定量の最終形を持つことも興味深い。2021年2月に論文にまとめてarXivに投稿した(arXiv:2102.12079)。ただし,分散既知の設定に比して一般性に乏しくさらなる研究が必要である。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

共同研究者とは電子メールで連絡を取って研究を進めた。理論的な進展もあった。しかし,例年のように「先方を一定期間訪問して,議論を重ねる出来ていたら」という反実仮想と比べると,当初の計画以上に進展しているとまでは言えない。

Strategy for Future Research Activity

これまで通り,共同研究を推進する。可能であればアメリカを訪問する。

Causes of Carryover

コロナのためにアメリカにいる共同研究者を訪問できなかった。今年度可能であれば訪問する。

  • Research Products

    (3 results)

All 2021 2020

All Journal Article (3 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 3 results,  Open Access: 2 results)

  • [Journal Article] Admissible estimators of a multivariate normal mean vector when the scale is unknown2021

    • Author(s)
      Maruyama Y、Strawderman W E
    • Journal Title

      Biometrika

      Volume: 108 Pages: 997~1003

    • DOI

      10.1093/biomet/asaa102

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A Gaussian sequence approach for proving minimaxity: A Review2021

    • Author(s)
      Maruyama Yuzo、Strawderman William E.
    • Journal Title

      Journal of Statistical Planning and Inference

      Volume: 211 Pages: 256-270

    • DOI

      10.1016/j.jspi.2020.06.007

    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Admissible Bayes equivariant estimation of location vectors for spherically symmetric distributions with unknown scale2020

    • Author(s)
      Maruyama Yuzo、Strawderman William E.
    • Journal Title

      The Annals of Statistics

      Volume: 48 Pages: 1052-1071

    • DOI

      10.1214/19-AOS1837

    • Peer Reviewed / Open Access / Int'l Joint Research

URL: 

Published: 2021-12-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi