2022 Fiscal Year Final Research Report
Development of Maintenance-free Context Recognition by Passive Sensing
Project/Area Number |
19K11941
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 60060:Information network-related
|
Research Institution | Osaka University |
Principal Investigator |
Uchiyama Akira 大阪大学, 大学院情報科学研究科, 准教授 (70555234)
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Keywords | Wi-Fi CSI / バッテリレスセンシング / 状況認識 |
Outline of Final Research Achievements |
In this research project, we focused on developing maintenance-free context recognition techniques using passive sensing with batteryless tags that require no power supply and ultra-low power tags capable of continuous operation through environmental power generation. We designed batteryless tags using conductive materials such as copper foil tape and developed a tag identification method using deep learning based on the reflected RF signal patterns. Additionally, we developed an indoor people counting method using Wi-Fi CSI (Channel State Information) and context recognition techniques using Wi-Fi CSI with ultra-low power tags. These achievements were presented at various venues including international conferences and published in international journals.
|
Free Research Field |
モバイルコンピューティング
|
Academic Significance and Societal Importance of the Research Achievements |
Wi-Fi CSIを用いた状況認識技術は導入コストの低い手法として注目を集め,活発に研究が行われてきた.一方,これまでにWi-Fi CSIを用いた見守りや在室検知などいくつかのサービスが登場しているが,普及には至っていない.この原因として,対象が複数存在する場合にそれらの区別がつかない,明確な電波の変化が現れにくいため認識可能な行動が限られる,という課題が存在する.本研究成果は,これらの課題解決に資するものであり,Wi-Fi CSIを用いた状況認識技術の普及につながるいくつかのアプローチを確立できたと考えている.
|