• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Efficient Query Processing for Learning-based Data Management

Research Project

  • PDF
Project/Area Number 19K11979
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 60080:Database-related
Research InstitutionOsaka University

Principal Investigator

Xiao Chuan  大阪大学, 情報科学研究科, 准教授 (10643900)

Project Period (FY) 2019-04-01 – 2022-03-31
Keywordsクエリ処理 / ML for DB / 高次元データ / 類似検索
Outline of Final Research Achievements

We addressed several fundamental problems of query processing for learning-based data management. We developed two solutions to efficient processing of queries on embedding vectors: the first works for binary high-dimensional vectors and efficiently returns answers for similarity search and join queries with Hamming distance constraints; the second handles approximate nearest neighbor search for real-valued high-dimensional vectors by utilizing hierarchical graph structures. We studied the processing of queries with learning-based predicates and developed methods that generate fast query plans through cardinality estimation. We performed system prototyping and evaluation, and released the source codes of our software at GitHub. The outcome of this project provides practical methods for learning-based data management and contributes to the development of next-generation data management systems.

Free Research Field

情報科学

Academic Significance and Societal Importance of the Research Achievements

本研究の成果は、機械学習に基づくデータマネジメントの実践的な手法を提供し、次世代データマネジメントシステムの開発に貢献する。最先端のデータベース技術を進展させ、機械学習、自然言語処理、コンピュータビジョンなどの関連研究分野やマーケティング、医療などの応用での技術開発に強い推進力を与える。また、日本のコンピュータサイエンスにおける威信を高め、海外の研究グループとのコラボレーションを促進することにも貢献する。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi