2021 Fiscal Year Final Research Report
Development of fog computing infrastructure with distributed database
Project/Area Number |
19K11985
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 60080:Database-related
|
Research Institution | Shizuoka Institute of Science and Technology |
Principal Investigator |
Kudo Tsukasa 静岡理工科大学, 情報学部, 特任教授 (90583782)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Keywords | データベースシステム / 時制データベース / フォグコンピューティング / 深層学習 / 画像認識 / Cycle-GAN |
Outline of Final Research Achievements |
Currently, in order to cope with the large amount of data input associated with the progress of the Internet of Things (IoT), fog computing is being utilized, in which primary processing is performed at fog nodes, which are terminals installed near sensors, and only the processing results are transferred to the server. In this study, I developed a method for automatic object detection and recognition to extract necessary information from continuously input videos at fog nodes and infrastructure for efficiently managing data between fog nodes and servers; and, I evaluated the effectiveness of this method.
|
Free Research Field |
データベース関連
|
Academic Significance and Societal Importance of the Research Achievements |
IoTの進展に伴い,様々な監視カメラが展開され,膨大なデータが常時,連続入力されている.このようなデータの解析を行うには,まず,対象部分を自動認識し,その上で解析を行うのが効率的である.本研究は,フォグノードで連続的に一次処理を行うフォグコンピューティングの特徴を活用し,深層学習やコンピュータグラフィックス(CG)を活用して効率的な自動認識の仕組みを提案,評価した点に学術的意義がある.また,自動運転の車載カメラや,災害防止用の河川カメラなど,動画からの情報抽出の需要は高まっており,この点で社会的意義がある.
|