• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Research-status Report

実環境における深層強化学習の実現と群ロボットへの展開

Research Project

Project/Area Number 19K12147
Research InstitutionMatsue National College of Technology

Principal Investigator

堀内 匡  松江工業高等専門学校, 電子制御工学科, 教授 (50294129)

Co-Investigator(Kenkyū-buntansha) 青代 敏行  東京都立産業技術高等専門学校, ものづくり工学科, 准教授 (40571849)
Project Period (FY) 2019-04-01 – 2024-03-31
Keywords深層強化学習 / 知能ロボティクス / 群ロボット / 行動獲得
Outline of Annual Research Achievements

本研究では,実環境での深層強化学習の実現と群ロボットの協調行動の獲得を目指す.実環境での深層強化学習を実現するために「シミュレーションと実機の差異の低減手法」を導入する.まず,本研究の第一目的として「複雑な実環境での単一のロボットの行動獲得」を実現する.室内環境を模した環境において,単一の移動ロボットの視覚情報に基づく行動獲得を深層強化学習により実現する.次に,複数のロボットが存在する環境を想定し,「実機の群ロボットを対象とした協調行動の獲得」を本研究の第二目的とする.実機の群ロボットの環境における「追い抜き行動」などの協調行動の獲得を深層強化学習により実現する.さらに,本研究の第三目的として「深層強化学習における行動選択の説明性の向上」を実現する.深層強化学習において,ロボットがカメラ画像内のどの領域に注目して行動を選択したかを明らかにする.
本年度は,第二目的である「実機の群ロボットを対象とした協調行動の獲得」および第三目的である「深層強化学習における行動選択の説明性の向上」に重点を置いて,研究を進めた.周囲360度を計測できるLiDARと汎用ロボットソフトウェアROSを搭載した車輪型移動ロボットを導入し,3台のロボットが存在する群ロボット環境において,「追い抜き行動の獲得」と「追従行動の獲得」の各タスクについて,深層強化学習としてDQN (Deep Q-network) を用いて有効性を検証した.また,深層学習の注視領域の可視化手法であるGrad-CAMと決定木学習を併用した手法を適用し,ロボットがカメラ画像内のどの領域と距離センサのどの部分に注目して行動を選択したかを検証した.しかし,コロナ禍のため,シミュレーション実験に比べて,実機実験をあまり実施できなかった.そのため,研究期間を一年間再延長し,令和5年度までとした.

Current Status of Research Progress
Current Status of Research Progress

3: Progress in research has been slightly delayed.

Reason

本年度は,新型コロナウィルスの影響があり,実機ロボットの環境での実験をあまり実施することができなかったが,シミュレーション環境での実験に重点を置いて研究を進める工夫をした.その結果,本研究における第二目的の「実機の群ロボットを対象とした協調行動の獲得」および第三目的の「深層強化学習における行動選択の説明性の向上」の両方に関して,研究を進め,一定の成果を上げることができた.これらの研究成果については,電気学会C部門大会,日本知能情報ファジィ学会中国・四国支部大会などの学会において,成果発表を行った.
しかし,シミュレーション環境での実験に比べて,実機環境での実験をあまり多く実施できなかった.そのため,研究期間を一年間再延長し,令和5年度までとした.令和4年度に新たに導入したLiDARおよびROS (Robot Operating System) を搭載した車輪型移動ロボットについてノウハウを蓄積し,実機環境での実験をよりスムーズに実施できるようにする予定である.以上の理由により,現在までの進捗状況は「やや遅れている」と評価する.

Strategy for Future Research Activity

今後は,実機ロボットの環境での実験をよりスムーズに実施できるように,汎用ロボットソフトウェアであるROS(Robot Operating System)を搭載した実機ロボットを引き続き用いて,深層強化学習の手法として,DQN (Deep Q-network) に加えて,Rainbowアルゴリズムなどの発展手法をROSで実装し,実機実験を行う.ROSの利用により,シミュレーション実験と同様の方法で,従来よりも簡単に実機実験を実施できると考えている.
また,本研究の第三目的である「深層強化学習における行動選択の説明性の向上」に関して,引き続き検討を進める.具体的には,深層強化学習のアルゴリズムとして,Rainbowアルゴリズムなどを導入した場合におけるロボットの注視領域を可視化する手法を検討するとともに,決定木学習による可視化との併用手法の検討および可視化手法の有効性を定量的に評価する方法の検討を進める.

Causes of Carryover

新型コロナウィルスの影響により,発表を予定していた学会のうちオンライン開催になったものがあり,旅費の一部が不要となった.また,新型コロナウィルスの影響で,シミュレーション環境での実験に重点を置いたため,実機ロボットを用いた実験をあまり実施することができなかった.そのため,成果発表のために参加する学会が予定より少なくなり,旅費および学会参加費の支出が想定よりも少なかった.これらの旅費および諸経費は,次年度における旅費,諸経費,物品費に使用する予定である.

  • Research Products

    (4 results)

All 2023 2022

All Presentation (4 results)

  • [Presentation] 深層強化学習を用いた群ロボットの追い抜き行動の獲得2023

    • Author(s)
      生和直央,堀内 匡
    • Organizer
      第27回日本知能情報ファジィ学会中国・四国支部大会
  • [Presentation] ベイズ最適化を用いた深層強化学習のハイパーパラメータの最適化2023

    • Author(s)
      曽田涼介,西村拓人,堀内 匡
    • Organizer
      第27回日本知能情報ファジィ学会中国・四国支部大会
  • [Presentation] 深層強化学習を用いた群ロボットの協調行動の獲得に関する検討2022

    • Author(s)
      福島 英,曽田涼介,堀内 匡
    • Organizer
      2022年電気学会電子・情報・システム部門大会
  • [Presentation] 深層強化学習を用いた移動ロボットの行動獲得における改良手法の検討2022

    • Author(s)
      曽田涼介,福島 英,堀内 匡
    • Organizer
      2022年電気学会電子・情報・システム部門大会

URL: 

Published: 2023-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi