2023 Fiscal Year Final Research Report
Constructive understanding of the gait adaptation mechanism through the cerebellum in the cat locomotion using a quadruped robot
Project/Area Number |
19K12169
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 61050:Intelligent robotics-related
|
Research Institution | Kyoto Institute of Technology |
Principal Investigator |
Kimura Hiroshi 京都工芸繊維大学, その他部局等, 教授 (40192562)
|
Project Period (FY) |
2019-04-01 – 2024-03-31
|
Keywords | interlimb coordination / split-belt adaptation / sensorimotor function / spinal cat / hip extension / leg unloading / gait transition |
Outline of Final Research Achievements |
In the split-belt locomotion of a decerebrate (thalamic) cat, the adaptation at the level of the spinal cord and the cerebellum is observed. Each adaptation is named "early" and "late." We proposed the "spinal cat model" based on sensorimotor functions using hip extension and leg unloading for the transition from the stance to swing phase of a leg. By the "thalamic cat model" with the additional step distance learning function, we explained the mechanism in such gait adaptation in view of the posture stabilization. We also employed the "crossed extension reflex", where the swing phase duration of a leg contralateral to the leg with hip extension by the fast belt is shortened. By applying this model to a quadruped robot, we realized that the relative phase difference on the touch down between legs became 0.5 in the normal split-belt, and that the gait of 1:2 step cycles on slow and fast belts was induced in the slow split-belt. Such gaits resembled those observed in spinal cats.
|
Free Research Field |
知能ロボット
|
Academic Significance and Societal Importance of the Research Achievements |
4脚ロボットの自律歩容適応・遷移において脚間協調は重要である.本研究は最終的に,従来の上位指令による歩容切替ではなく感覚運動機能のみによる自律分散的な歩容適応・遷移を目指している.本研究は左右脚間協調に焦点を絞って,そのメカニズムを考察した.結果として,歩容適応では胴体姿勢安定化のために着地タイミング決定が重要であることが分かった.さらに,歩容遷移とは両脚支持期において胴体を含む系全体の力学的安定性を保ちながらどちらの脚が先に離地するかという離地タイミング決定問題に帰着できることが明らかになった.このような知見は,4脚ロボットの感覚情報に基づく自律制御における複雑度の低減に貢献する.
|