2023 Fiscal Year Final Research Report
Development of Learners' supporting module based on the educational big data analytics
Project/Area Number |
19K12251
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 62030:Learning support system-related
|
Research Institution | Kumamoto University |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2024-03-31
|
Keywords | 教育ビックデータ / 学習支援システム / 遠隔講義 / コロナ禍 / VODサーバ / 出席管理 |
Outline of Final Research Achievements |
This research was planned to design and build the learning management system (LMS) which can support individual student who may have a difficulty to keep learning based on the dynamic education big data on LMS. Due to COVID-19, the educational environment at universities had to change drastically such that frequnent change from the distance learning and hybrid as well as high-flex learning to the conventinal face-to-face learning and vise versa. This change let us use the various data including VOD and single-sign-on system as well as ordinary LMS log. Also more detailed data such as mouse movement record on LMS for each student, which may detect a pontetial cheating at the online examination are also used for analytics. During this research period, 18 reviewed journal and international conference articles are published, and 5 Ph.D candidates have obtained the degrees succesfuuly.
|
Free Research Field |
教育工学
|
Academic Significance and Societal Importance of the Research Achievements |
18歳人口の減少などの社会的要因もあり、これまで以上に大学生の多様化が進むと考えられる状況で、大学への入学を許可した個々の学生の特性を踏まえた学修支援の重要性は、今後も高まると想定される。特に、コロナ禍を経て、学びの多様化は進み、遠隔での学習を含め、学習支援システム(LMS)を含めた教育システムに蓄積される大量の教育データを活用することで、これまでにきめ細やかな学習支援が実現できる可能性がある。本研究では、多様な教育データの蓄積手法や、蓄積された教育データを、個別の講義レベルのみならず、カリキュラムを通じた学習形態の分析をすることを試みた。
|