2021 Fiscal Year Final Research Report
Dual utilization of Chlorella for prevention of global warming and purification of arsenic contaminated water
Project/Area Number |
19K12384
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 64020:Environmental load reduction and remediation-related
|
Research Institution | Tokyo University of Pharmacy and Life Science |
Principal Investigator |
SATO NORIHIRO 東京薬科大学, 生命科学部, 准教授 (50266897)
|
Co-Investigator(Kenkyū-buntansha) |
藤原 祥子 東京薬科大学, 生命科学部, 教授 (30266895)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Keywords | クロレラ / トリアシルグリセロール / ヒ酸 / Asストレス / As汚染水浄化 / 地球温暖化防止 / 炭素・エネルギー代謝 / リン欠乏応答性脂質リモデリング |
Outline of Final Research Achievements |
Cells of a green alga, Chlorella, accumulate triacylglycerol (TG), the material for biofuel production, and arsenic (As) during culturing in the presence of arsenate. Chlorella is thus expected as a biological material for both prevention of global warming and purification of As contaminated water. This study demonstrated the regulation of metabolism and gene expression in Chlorella under As-stress conditions, as follows. (1) TG accumulation is supported through regulation of carbon- and energy-metabolism that enabled the preferential flow of carbon and energy into TG synthesis system. (2) As the response to phosphorus (P)-limitation stress, a non-P lipid, diacylglyceryltrimethylhomoserine appeared as a novel lipid concomitantly with the loss of both phosphatidylcholine and phosphatidylethanolamine to mitigate the lowered availability to phosphate in As-stressed cells where arsenate compete with phosphate in P-metabolism.
|
Free Research Field |
植物生理・生化学
|
Academic Significance and Societal Importance of the Research Achievements |
地球温暖化防止とAs汚染水浄化の二元的活用をクロレラで実用化する上で、TGとAsの収量増大は重要であり、そのために細胞のTG蓄積能と共にAs耐性能を強化する必要がある。本研究は、Asストレス下でのTGの合成促進が炭素代謝とエネルギー代謝の協調的な調節に支えられることを遺伝子レベルまで掘り下げて示し、その分子機構に関する知見を深めた。一方、従来、Asストレス下、As無毒化代謝が報告されてきた。これとは別に、クロレラではリン欠乏様応答の脂質リモデリングが見出され、それはAsストレス適応応答と理解された。今後、これら代謝調節の遺伝子操作がクロレラの二元的活用を実用化する上で鍵となるであろう。
|