• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Exploring diagnostic systems using exhaled breath analysis in chronic obstructive pulmonary disease.

Research Project

  • PDF
Project/Area Number 19K12816
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 90130:Medical systems-related
Research InstitutionChiba University

Principal Investigator

Naoko Kawata  千葉大学, 真菌医学研究センター, 特任准教授 (00400896)

Project Period (FY) 2019-04-01 – 2023-03-31
KeywordsCOPD / 呼気ガス / 画像診断 / 栄養指標 / 胸部CT / 胸部MRI
Outline of Final Research Achievements

In the first year, 40 COPD patients underwent exhaled breath analysis. For low molecular weight, a significant association was found between the signal intensity of organic compounds with a mass number around 50 and 60 and obstructive impairment and emphysema. For high molecular weight, differences in the signal intensity of alkane organic compounds were found between healthy subjects and COPD patients. However, the COVID-19 pandemic has made breath analysis impossible since January 2020.
To assess the association with exhaled gases, CT was used to show that the COPD group with an asthmatic component underwent different structural changes than the COPD-only group. Dynamic MRI was also used to show an association with obstructive impairment and residual air volume. Furthermore, there was a strong association between subjective symptoms and nutritional indices and exacerbations in elderly COPD. This suggests the need for comprehensive medical care.

Free Research Field

呼吸器

Academic Significance and Societal Importance of the Research Achievements

CCOPD患者における呼気ガス分析や、胸部CT画像による形態学的評価、胸部動態MRIによる動態解析は、現在の呼吸機能検査では評価できないCOPDの病型分類に貢献し、今後の新しい診断や評価方法となる可能性がある。また、超高齢社会において、COPDをはじめとする慢性進行性疾患の管理では、疾患重症度だけでなく栄養指標などを含む包括的な診療の必要性を示した。COVID-19流行収束後、呼気ガスから得られる所見と、画像を用いた肺の形態変化、栄養指標などの項目と組み合わせ、COPDの早期診断や疾患増悪との関連について解析予定である。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi