2021 Fiscal Year Annual Research Report
Project/Area Number |
19K14504
|
Research Institution | The University of Tokyo |
Principal Investigator |
山岸 亮 東京大学, カブリ数物連携宇宙研究機構, 特任研究員 (00825630)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Keywords | モジュライ空間 / G-constellation / クレパント特異点解消 |
Outline of Annual Research Achievements |
令和3年度は特に箙の表現から成るモジュライ空間の性質を調べた。このようなモジュライ空間は研究課題である正則シンプレクティック多様体を与える典型的な例であり、代数的な手法を用いて多様体の幾何学的性質を調べることが可能であると期待される。 より具体的な研究対象として、複素ベクトル空間 V に作用する有限群 G から決まる G-constellation のモジュライ空間というものについて詳しく調べた。これ自体は一般には(特異点を許した)正則シンプレクティック多様体になるわけではないが、シンプレクティック多様体への応用も期待される。 有限群 G がアーベル群の場合については、前年度から研究が引き続いており、その内容は論文にまとめられ、雑誌に掲載されることになった。その内容としては、モジュライ空間の候補となるような与えられた多様体 X (正確には、商特異点 V/G のクレパントな特異点解消)に対し、 X が実際に期待されるモジュライ空間としての構造を持つための条件を与えた。この条件とは、X 上の自然な G-constellation の族が存在し、その各ファイバーが G-constellation として(または箙の表現として)非分解可能であることである。 この証明では、モジュライ空間 X を構成する上で現れる安定性条件の空間から X のピカール群への良い性質を持った準同型があることを示し、これを具体的に記述した。これと同様の構成が G がアーベル群でない場合にも可能であることを示し、応用としてモジュライ空間がトーリック多様体への良い性質を持った埋め込みを持つことが示せた。これによってモジュライ空間の双有理幾何的な振る舞いがトーリック多様体と同様になされることがわかり、組み合わせ論的なアプローチが可能になった。
|