2022 Fiscal Year Final Research Report
Investigation of similarities in representation theory of quantum affine algebras of several different Dynkin types
Project/Area Number |
19K14515
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 11010:Algebra-related
|
Research Institution | Tokyo Institute of Technology (2022) Shibaura Institute of Technology (2019-2021) |
Principal Investigator |
Oya Hironori 東京工業大学, 理学院, 准教授 (90835505)
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Keywords | 量子ループ代数 / 有限次元表現論 / 量子Grothendieck環 / q-指標 / クラスター代数 |
Outline of Final Research Achievements |
In my joint work with Ryo Fujita, David Hernandez, and Se-jin Oh, we constructed a collection of ring isomorphisms between the quantum Grothendieck rings of monoidal categories of finite-dimensional modules over the quantum loop algebras associated with complex simple Lie algebras g_1 and g_2 under the assumption that the complex simple Lie algebra defined as the unfolding of g_1 coincides with that of g_2. As its application, we deduced several new positivity properties of the simple (q,t)-characters of non-symmetric types, non-trivial birational relations among the simple (q,t)-characters of quantum loop algebras associated with g_1 and g_2, and the affirmative answer to Hernandez's conjecture for the quantum loop algebra of type B_n(1).
|
Free Research Field |
表現論
|
Academic Significance and Societal Importance of the Research Achievements |
非対称型量子ループ代数の有限次元表現圏の量子Grothendieck環の構造の研究を,対称型量子ループ代数の有限次元表現圏の量子Grothendieck環と比較するという新しいアブローチから進めた.結果として,適切に対応する型のものを比較すると(q,t)-指標を保つ良い同型が存在することが示され,これまで非対称型の場合に知られていなかった(q,t)-指標の正値性や,B_n(1)型の量子ループ代数の既約表現のq-指標が代数的なアルゴリズムで計算されることが証明された.さらに,非対称型と対称型の量子ループ代数の有限次元表現の間の新たな関係を示唆する,(q,t)-指標の間の関係を導くことができた.
|