2022 Fiscal Year Final Research Report
Study on Fiberwise A-infinity Structures
Project/Area Number |
19K14535
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 11020:Geometry-related
|
Research Institution | Kyushu University |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Keywords | ホモトピー論 / ファイバーワイズホモトピー論 / A無限大空間 / crossed module |
Outline of Final Research Achievements |
The most important result of this project is the development of the theory of higher homotopy normality using fiberwise A-infinity structures. Though higher homotopy normality has been studied by several people, there are no theory of ``essentially higher'' homotopy normality. The theory established in this project is a candidate for such theory. It enables us to determine when a given homomorphism has higher homotopy normality by the classical technique in the fiberwise homotopy theory. Indeed, the p-local higher homotopy normality of the inclusions SU(m) -> SU(n) are determined for some m,n and p. We also obtained some results on the homotopy type of the unitary groups of some uniform Roe algebras in a joint work. Comparing to Roe algebras, uniform Roe algebras tend to have huge K-theory. We could determine the homotopy type of the unitary groups of uniform Roe algebras on Z and Z^2.
|
Free Research Field |
代数的位相幾何学
|
Academic Significance and Societal Importance of the Research Achievements |
高次ホモトピー正規性はこれまでにも研究されてきたが,「本質的に高次の」ホモトピー正規性の理論は得られていなかった.得られた理論では古典的なファイバーワイズホモトピー論の技術を用いて,準同型が高次ホモトピー正規性を持つかどうか調べられる点が強みである.実際,包含写像SU(m) -> SU(n)のp-局所的なホモトピー正規性をいくつかの場合に決定した.このように扱いやすさも実証できており,今後の発展が期待できる. 一様Roe代数のユニタリ群は巨大なホモトピー群を持つ(一様Roe代数のK群と一致)ため難解であるが,実際にホモトピー型を調べる手法を与えた.距離を考慮したトポロジーへの応用も期待できる.
|