• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Study on Fiberwise A-infinity Structures

Research Project

  • PDF
Project/Area Number 19K14535
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 11020:Geometry-related
Research InstitutionKyushu University

Principal Investigator

Tsutaya Mitsunobu  九州大学, 数理学研究院, 准教授 (80711994)

Project Period (FY) 2019-04-01 – 2023-03-31
Keywordsホモトピー論 / ファイバーワイズホモトピー論 / A無限大空間 / crossed module
Outline of Final Research Achievements

The most important result of this project is the development of the theory of higher homotopy normality using fiberwise A-infinity structures. Though higher homotopy normality has been studied by several people, there are no theory of ``essentially higher'' homotopy normality. The theory established in this project is a candidate for such theory. It enables us to determine when a given homomorphism has higher homotopy normality by the classical technique in the fiberwise homotopy theory. Indeed, the p-local higher homotopy normality of the inclusions SU(m) -> SU(n) are determined for some m,n and p.
We also obtained some results on the homotopy type of the unitary groups of some uniform Roe algebras in a joint work. Comparing to Roe algebras, uniform Roe algebras tend to have huge K-theory. We could determine the homotopy type of the unitary groups of uniform Roe algebras on Z and Z^2.

Free Research Field

代数的位相幾何学

Academic Significance and Societal Importance of the Research Achievements

高次ホモトピー正規性はこれまでにも研究されてきたが,「本質的に高次の」ホモトピー正規性の理論は得られていなかった.得られた理論では古典的なファイバーワイズホモトピー論の技術を用いて,準同型が高次ホモトピー正規性を持つかどうか調べられる点が強みである.実際,包含写像SU(m) -> SU(n)のp-局所的なホモトピー正規性をいくつかの場合に決定した.このように扱いやすさも実証できており,今後の発展が期待できる.
一様Roe代数のユニタリ群は巨大なホモトピー群を持つ(一様Roe代数のK群と一致)ため難解であるが,実際にホモトピー型を調べる手法を与えた.距離を考慮したトポロジーへの応用も期待できる.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi