2022 Fiscal Year Final Research Report
L-functions of pseudo-Anosov flows and idele theory for 3-manifolds
Project/Area Number |
19K14538
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 11020:Geometry-related
|
Research Institution | Ochanomizu University (2022) Tokyo Denki University (2019-2021) |
Principal Investigator |
Jun Ueki お茶の水女子大学, 基幹研究院, 講師 (90780081)
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Keywords | イデール的類体論 / モジュラー結び目 / 結び目・絡み目・3次元多様体 / 岩澤理論・セルマー群 / Weberの類数問題 / p進トーション / non-acyclic表現・普遍変形のL関数 / 副有限剛性 |
Outline of Final Research Achievements |
We formulated a Hilbert reciprocity law which is compatible with idelic class field field over a 3-manifold. We pointed out that the set of modular knots is an example of Chebotarev link and extended Ghys’s theorem by replacing SL2Z by a general triangle group. We obtained a result on the profinite rigidity of twisted Alexander polynomials. We investigated analogues of Weber’s class number problem in Zp-covers of knots and elliptic curves and pointed out an analogue of Lang--Trotter conjecture. We established the Iwasawa-type formula for Zp-direct product cover of links. We gave a systematic study of the multiplicity of non-acyclic SL2 representations of twists knots and twisted links and the order of zeros of the L-functions of universal deformations.
|
Free Research Field |
数論的位相幾何学
|
Academic Significance and Societal Importance of the Research Achievements |
「数論的位相幾何学」の目的は,素数と結び目,代数体と3 次元多様体の類似性を体系化し,色々な予想や手法を次々に見出だせるような自然な地平を切り拓くことである.本研究の目的は過去に定式化した3次元多様体の代数的イデール理論の解析的側面にアプローチする中で類似性の適用範囲を大きく拡げること,また付随して位相不変量の副有限剛性の問題を考察し,低次元トポロジーへの応用や,数論側へのフィードバックに資すことであった.こうした意味で,本研究は多くの成果を得ることができた.モジュラー結び目・p進トーション・絡み目群のnon-acyclyci表現といった新たな重要な研究対象を得て,研究の土壌は大きく広がった.
|